几何校正、正射校正以及几何配准之间的区别和联系

几何校正分为不同级别,正射校正可以说是几何校正的最高级别。几何配准和几何校正相比,几何校正主要是针对数据本身的错误,是为了给数据本身加上真实对应的几何坐标信息,是对数据本身真实性的还原。

一般所说的几何校正是消除因大气传输、传感器本身、地球曲率等因素造成的几何畸变,主要纠正或者赋予影像平面坐标。正射校正除了进行常规的几何校正的功能外,还要根据DEM来纠正影像因地形起伏而产生的畸变,会给图像加上高程信息。

几何配准和几何校正相比,几何校正主要是针对数据本身的错误,是为了给数据本身加上真实对应的几何坐标信息,是对数据本身真实性的还原。而几何配准是相对于一个参考图像而言,要将一个图像配准到参考图像,是图与图之间的一种几何关系。

所以,几何校正更像是前期的一种数据处理,几何配准更像是后期的数据处理。 实质上,影像配准的原理与正射纠正的原理基本相同,是将不同时相、不同波段或不同类型的影像在几何上互相匹配,使影像间具有统一的地理坐标及像元空间分辨率。

几何校正分为两种:

1、几何粗校正:针对引起畸变原因而进行的校正。

2、几何精校正:利用控制点进行的几何校正,它是用一种数学模型来近似描述遥感图像的几何畸变过程,并利用畸变的遥感图像与标准 地图之间的一些对应点(即控制点数据对)求得这个几何畸变模型,然后利用此模型进行几何畸变的校正,这种校正不考虑引直畸变的原因。

系统几何校正数据是指经过辐射校正和系统级几何校正处理的数据,即从卫星的下行数据中提取PCD星历参数,再将其用于TM 数据的系统级几何校正。来进行几何校正处理,其地理定位精度将大大提高。系统几何校正采用快速的校正方法,基于图像的扭曲分解为扫描和卫星的标称引起和7个微扰量引起的扭曲,分别为卫星偏置,几何精度良好。

### PIE-SAR 区域网平差的方法 PIE-SAR 的区域网平差主要依赖于多源数据融合平差算法来提高影像几何定位精度。具体来说,该过程涉及以下几个方面: #### 数据预处理 在进行区域网平差之前,需要对原始 SAR 影像其他辅助数据(如光学影像)进行必要的预处理操作。这包括辐射校正、去噪声以及初步的几何粗矫正等措施[^2]。 #### 自动匹配技术 为了获得精确的空间位置关系,在不同传感器之间建立可靠的同名点是至关重要的一步。为此采用了基于相位一致性的异源匹配技术,能够有效地实现光学与 SAR 影像之间的自动配准。此过程中可以利用已有的高质量光学图像作为地理参照标准,从而确保最终得到的匹配结果具有较高的准确性。 #### 控制点选取与优化 通过上述提到的技术手段可以直接获取大量高精度的地面控制点(GCPs),这些 GCPs 不仅可以用作后续平差计算的基础输入参数,同时也大大减少了人为干预的需求。此外,还可以进一步筛选并优化所选GCP的质量,以提升整体解算效果。 #### 平差点构建及误差调整 将经过验证后的有效控制点加入到整个网络结构当中形成所谓的“连接点”,它们共同构成了用于执行全局最小二乘法或其他最优估计策略的数据集。在此基础上开展全面而细致的地物表面特征分析工作,并据此完成针对各个局部区域内存在的系统性随机性偏差项的有效补偿[^1]。 #### 成果输出与应用拓展 最后阶段会生成一系列标准化的产品文件,比如 DOM 数字正射影像图以及其他专题地图资料;同时支持多种高级功能模块的应用开发,例如智能镶嵌、无缝拼接按需定制化分幅打印服务等等。 ```python def perform_pie_sar_bundle_adjustment(sar_images, optical_reference_image): """ 执行PIE-SAR区域网平差 参数: sar_images (list): 待处理的SAR影像列表 optical_reference_image (str): 参考用的光学影像路径 返回: dict: 含有平差后成果的信息集合 """ # 预处理部分省略... # 实现自动匹配逻辑... control_points = extract_control_points(optical_reference_image) optimized_network = optimize_control_point_set(control_points) adjusted_results = apply_least_square_method(optimized_network) output_products = generate_standardized_outputs(adjusted_results) return { "dom": create_dom(output_products), "other_maps": prepare_additional_map_layers() } ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值