一、建立样本点区域
(1)找到如下选项
(2)对各类样本进行命名,在进行各类样本的样点选取工作
勾选林地
勾选水体
依次勾选其他类别
(3)保存样本点方便下次使用
分离度:点击感兴趣区域查看分离度
数据达到1.9以上则表示分离效果好
二、监督分类
使用最大似然法分类
三、分类后处理
由于最大似然分类是基于像素的分类方法,分类结果中细小的版块较多,可以采用“Majority/Minority Analysis”聚类分析进行消除,最小聚类单元选择3*3.
输出结果
四、分类精度评价
对于无真实样本的情况,重复第一个步骤再选取各个类型的roi兴趣区作为分类的验证数据集。
然后,在Toolbox工具箱中,双击Classification→Post Classification→Confusion Matrix Using Ground Truth ROIs 工具,属性字段一致的会自动匹配,不一致的需要自行匹配。
得到混淆矩阵如下图所示