作者 | JiekeXu
来源 |公众号 JiekeXu DBA之路(ID: JiekeXu_IT)
如需转载请联系授权 | (个人微信 ID:JiekeXu_DBA)
大家好,我是JiekeXu,江湖人称“强哥”,青学会MOP技术社区联合创始人,荣获Oracle ACE Pro称号,墨天轮MVP,墨天轮年度“墨力之星”,拥有Oracle OCP/OCM 认证,MySQL 5.7/8.0 OCP认证以及KCA、KCP、KCSM、PCA、PCTA、OBCA等众多国产数据库认证证书,今天和大家一起来看看 AI 向量 OCP 考试认证指南。欢迎点击下方“JiekeXu DBA之路”公众号名片可关注我的微信公众号,然后点击右上方三个点“设为星标”置顶,更多干货文章才能第一时间推送给你!后台回复【加群】,添加我个人微信拉你进群交流学习。
下面为全部试题,格式上不太方便,建议在电脑浏览器观看三五个小时即可通过;
Exam 1Z0-184-25: Oracle AI Vector Search Professional
https://mylearn.oracle.com/ou/exam/oracle-ai-vector-search-professional-1z0-184-25/38560/144913/236030
官方文档Oracle Database Oracle AI Vector Search User's Guide, 23ai
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/index.html
1.When generating vector embeddings outside the database,what is the most suitable
option for storing the embeddings for later use?
在数据库外部生成向量嵌入时,存储这些嵌入以便后续使用的最适合选项是什么?
A.in a CSV file
B.Ina binary FVEC file with the relational data in a CSV file 二进制 FVEC 文件和 CSV 文件中的关系数据
C.In the database as BLOB(Binary Large Object) data 以 BLOB(二进制大对象)数据形式存储在数据库中
D.In a dedicated vector database 在专用向量数据库中
2.When generating vector embeddings for a new dataset outside of Oracle Database
23ai, which factor is crucial to ensure meaningful similarity search results?
为 Oracle Database 23ai 以外的新数据集生成向量嵌入时,哪个因素对确保有意义的相似性搜索结果至关重要?
A.The choice of programming language used to process the dataset(for example,Python, Java) 用于处理数据集的编程语言的选择(例如,Python、Java)
B.The physical location where the vector embeddings are stored 存储向量嵌入的物理位置
C.The storage format of the new dataset(for example, CSV, JSON) 新数据集的存储格式(例如 CSV、JSON)
D.The same vector embedding model must be used for vectorizing the data and creating a query vector 必须使用相同的向量嵌入模型对数据进行向量化并创建查询向量
3.You are working with vector search in Oracle Database 23ai and need to ensure the integrity of your vector data during storage and retrieval Which factor is crucial for maintaining the accuracy and reliability of your vector search results。
您正在 Oracle Database 23ai 中使用向量搜索,需要确保向量数据在存储和检索过程中的完整性,哪些因素对保持向量搜索结果的准确性和可靠性至关重要?
A.Using the same embedding model for both vector creation and similarity search. 在向量创建和相似性搜索中使用相同的嵌入模型。
B.Regularly updating vector embeddings to reflect changes in the source data. 定期更新向量嵌套,以反映源数据的变化。
C.The specific distance algorithm employed for vector comparisons. 用于向量比较的特定距离算法。
D.The physical storage location of the vector data. 向量数据的物理存储位置。
4.Which DDL operation is NOT permitted on a table containing a VECTOR column in Oracle Database 23ai? 在 Oracle Database 23ai 中,不允许对包含 VECTOR 列的表进行哪种 DDL 操作?
A.Creating a new table using CTAS CREATE TABLE AS SELECT that includes the VECTOR column from the original table. 使用 CTAS CREATE TABLE AS SELECT 创建包含原始表中 VECTOR 列的新表。
B.Dropping an existing VECTOR column from the table. 从表中删除现有的 VECTOR 列。
C.Modifying the data type of an existing VECTOR column to a non-VECTOR type. 将现有 VECTOR 列的数据类型修改为非 VECTOR 类型。
D.Adding a new VECTOR column to the table. 在表中添加新的 VECTOR 列。
5.Which SQL statement correctly adds a VECTOR column named v with 4 dimensions and FLOAT 32 format to an existing table named my_table? 哪条 SQL 语句能正确地在名为 my_table 的现有表中添加名为 v 的 VECTOR 列(4 维、FLOAT 32)
A.ALTERTABLE my_table MODIFY(VVECTOR(4,FLOAT32))
B.ALTERTABLE my_table ADD (VVECTOR(4,FLOAT32))
C.UPDATE my_table SETv-VECTOR(4,FLOAT32)
D.ALTER TABLE my table ADD V VECTOR(4,FLOAT32)
6.A machine learning team is using IVF indexes in Oracle Database 23ai to find similar images in a large dataset. During testing, they observe that the search results are often incomplete,missing relevant images.They suspect the issue lies in the number of partitions probed.How should they improve the search accuracy?
一个机器学习团队正在使用 Oracle Database 23ai 中的 IVF 索引来查找大型数据集中的相似图像。在测试过程中,他们发现搜索结果经常不完整,缺少相关图像。他们怀疑问题出在探测的分区数量上。
A.Add the TARGET ACCURACY clause to the query with a higher value for the accuracy.在查询中添加 TARGET ACCURACY 子句,提高准确率。
B.Change the index type to HNSW for better accuracy.将索引类型更改为 HNSW,以提高准确性。
C.Increase the VECTOR MEMORY SIZE initialization parameter. 增加 VECTOR MEMORY SIZE 初始化参数。
D.Re-create the index with a higher EFCONSTRUCTION value.用更高的 EFCONSTRUCTION 值重新创建索引。
7.What happens when querying with an IVF index if you increase the value of the NEIGHBOR PARTITION probes parameter? 使用 IVF 索引查询时,如果增加 NEIGHBOR PARTITION probes 参数的值,会发生什么情况?
A.The number of centroids decreases.中心点的数量会减少。
B.Accuracy decreases.精确度降低。
C.Index creation time is reduced.索引创建时间缩短
D.More partitions are probed, improving accuracy. but also increasing query latency 探测更多分区,提高准确率,但也会增加查询延迟
8.Which PL/SQL package is primarily used for interacting with Generative Al services in Oracle Database 23ai? 哪个PL/SQL 包主要用于与 Oracle Database 23ai 中的 Generative 生成式 Al 服务交互?
A.DBMS_Al
B.DBMS_ML
C.DBMS_VECTOR_CHAIN
D.DBMS_GENAI
解析:DBMS_VECTOR_CHAIN 软件包可使用 Oracle AI 向量搜索进行高级操作,如分块和嵌入数据以及文本生成和摘要功能。它更适用于带有相似性搜索和混合搜索功能的文本处理,使用的功能可通过流水线连接实现端到端搜索。https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/dbms_vector_chain-vecse.html