Matlab实现 遗传算法 无向图结点分成两类使得两类间边数最少 数学建模作业

输入:一个图的邻接矩阵G,n1,n2 (举例n1=16,n2=1)

输出:节点的分类id(第一类为0,第二类为1,0的个数为n1个, 1的个数为n2个)

目标:使得两类之间的边数最少

算法:遗传算法

目录

步骤1:初始化种群,种群个数,随机生成初始种群

步骤2:交叉算子

步骤3:突变算子

步骤4:计算适应度,进行种群的优化选择

步骤5:将代码组合起来

步骤6:画图


给出如下邻接矩阵

0    1    0    0    0    0    0    0    0    0    0    1    0    0
0    1    0    0    0    0    0    0    0    0    1    0    0    0
0    0    0    0    0    0    0    1    1    0    0    0    1    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    1    0    1    1
0    0    0    0    0    0    0    0    0    0    0    0    0    1
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    1
0    0    0    0    0    0    0    0    0    0    0    0    1    1
0    0    0    0    0    0    0    0    0    0    0    0    1    1
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    1    1
0    0    0    0    0    0    0    0    0    0    0    0    0    1
0    0    0    0    0    0    0    0    0    0    0    0    1    1
0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    1    1
0    0    0    0    0    1    0    1    0    1    0    0    1    1
0    0    0    0    0    1    0    1    0    0    0    1    0    0
0    0    0    1    1    0    0    0    0    0    0    1    0    0
0    0    0    0    0    0    0    0    0    1    0    0    0    1
0    0    0    1    1    0    0    0    0    0    0    0    0    1
0    0    0    0    0    0    0    0    0    0    0    1    0    1
0    0    0    1    0    0    1    0    0    0    0    0    1    1
0    0    0    0    0    0    0    0    0    0    0    0    1    1
0    0    0    0    1    1    0    0    1    0    0    0    1    1
1    0    1    1    0    0    0    0    0    1    1    1    0    1
1    0    1    1    0    0    1    1    1    1    1    1    1    0


步骤1:初始化种群,种群个数,随机生成初始种群

population = cell(1,100);
k=1;
 %随机选取100个种群
for i = 1:100
    a = randperm(34);
    a(find(a <= n1)) = 1;
    a(find(a > n1)) = 0;
    population(i) = {a};
end

        randperm():此 MATLAB 函数 返回行向量,其中包含从 1 到 n 没有重复元素的整数随机排列。找到1~16在数组a的位置,将此位置的数值置1,同理,17~34置0。

        这样就得到了一个值全是0或1的数组,0和1各表示一个分类,将34个点分为两类。重复100次,形成一个元胞数组,即为100个将结点分为两类的种群。

        更详细的一般编码步骤可以在其他文章搜到,但本题不涉及故不提及。


步骤2:交叉算子

 %交叉
    g = 1;
    count = 1;
    %总交叉次数小于500或得到40对交叉后存活的新个体
    while g <= 500 && count <= 40    
    e = sort(randperm(34,2));
    f = randperm(20,2);
    ransetia = cell2mat(population(f(1)));
    ransetib = cell2mat(population(f(2)));
    %存活条件为交叉前后两组点的数量不变
    if sum(ransetia(e(1):e(2))) == sum(ransetib(e(1):e(2)))
        lingshi = ransetia(e(1):e(2));
        ransetia(e(1):e(2)) = ransetib(e(1):e(2));
        ransetib(e(1):e(2)) = lingshi;
        population(19+2*count) = {ransetia};
        population(20+2*count) = {ransetib};
        count = count+1;
    end
    g = g+1;
    end

让我们先设定词义  种群=染色体

        编码的交叉类比染色体交叉,交叉的编码段位置及长度由randperm随机出来,在此题中要满足分出的两类数量为16和18,故交叉出的染色体也要满足条件,ransetia、ransetib中1的数量仍然保持为16,不满足的则直接被淘汰,满足的加入种群。

        总交叉次数500可以自己视情况设定,count达到40停止,意思是生成40*2=80个新种群,更新元胞数组21~100位置的种群,前20个是上一次迭代保留的优秀种群,下文会提到。


步骤3:突变算子

        任选一个种群,选出两个结点,如果一个是0一个是1,将其突变为1和0,即在交换所属于不同类两个结点的位置。突变次数counter设置为80次,可以视情况改变。

%变异
    counter = 1;
    while counter <= 80
        c = randperm(34,2);
        r = cell2mat(population(randperm(100,1)));
        if sum(r(c)) == 1
            r(c) = r(c)*(-1)+1;
            population(20+counter) = {r};
            counter = counter+1;
        end
    end  

步骤4:计算适应度,进行种群的优化选择

        适应度的测度:1/(两类结点之间连接的边数+1) 分母加一是以防分成互相之间没有边连通的两类时导致分母变为0出错。

 %适应度
    fitness = [];
    %计算适应度
    for i = 1:100
        x = cell2mat(population(i));
        b = Adjacency_matrix-x ;
        fitness(i) = 1/(length(find(b(find(x == 1),:)==1))+1);
    end

    [fitness,Index] = sort(fitness,"descend");
    %将每次迭代的最大适应度保存,便于后续画图
    maxfit(k) = fitness(1);
    %保存该次迭代的总体适应度水平
    general_fit(k) = mean(fitness);
    %淘汰80个种群
    population(Index(21:100)) = [];      
    

        精英数量直接设置成了最优的前20个,并没有根据优劣程度排序进行轮盘赌选择,也没有根据迭代次数设置精英个数的递增保留。(因为这题这样已经够用了,可以去设置一下,不难)


步骤5:将代码组合起来

function finalans=GA(Adjacency_matrix,n1,n2)

% Adjacency_matrix= w
% n1 = 16,n2 = 18

if (n1+n2)~=size(Adjacency_matrix,1) ||...
    size(Adjacency_matrix,1)~=size(Adjacency_matrix,2)||...
    n1<1 || n2<1
    error('参数格式不合法')
end

population = cell(1,100);
k=1;
 %随机选取100个种群
for i = 1:100
    a = randperm(34);
    a(find(a <= n1)) = 1;
    a(find(a > n1)) = 0;
    population(i) = {a};
end

while k <= 100
    %交叉
    g = 1;
    count = 1;
    %总交叉次数小于500或得到40对交叉后存活的新个体
    while g <= 500 && count <= 40    
    e = sort(randperm(34,2));
    f = randperm(20,2);
    ransetia = cell2mat(population(f(1)));
    ransetib = cell2mat(population(f(2)));
    %存活条件为交叉前后两组点的数量不变
    if sum(ransetia(e(1):e(2))) == sum(ransetib(e(1):e(2)))
        lingshi = ransetia(e(1):e(2));
        ransetia(e(1):e(2)) = ransetib(e(1):e(2));
        ransetib(e(1):e(2)) = lingshi;
        population(19+2*count) = {ransetia};
        population(20+2*count) = {ransetib};
        count = count+1;
    end
    g = g+1;
    end


    %变异
    counter = 1;
    while counter <= 80
        c = randperm(34,2);
        r = cell2mat(population(randperm(100,1)));
        if sum(r(c)) == 1
            r(c) = r(c)*(-1)+1;
            population(20+counter) = {r};
            counter = counter+1;
        end
    end   
    %适应度
    fitness = [];
    %计算适应度
    for i = 1:100
        x = cell2mat(population(i));
        b = Adjacency_matrix-x ;
        fitness(i) = 1/(length(find(b(find(x == 1),:)==1))+1);
    end

    [fitness,Index] = sort(fitness,"descend");
    %将每次迭代的最大适应度保存
    maxfit(k) = fitness(1);
    %保存该次迭代的总体适应度水平
    general_fit(k) = mean(fitness);
    %淘汰80个种群
    population(Index(21:100)) = [];      
    k = k+1;
end

步骤6:画图

        画图风格因人而异,这里不贴代码直接贴出成品

        易知最小边数为10(分类结果不唯一)

  • 7
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值