十大算法--支持向量机

本文详细介绍了支持向量机的基础知识,从拉格朗日对偶性开始,解释了如何将原始问题转化为对偶问题。接着,讨论了线性可分和支持向量机的优化问题,以及如何构建拉格朗日函数。对于线性不可分情况,介绍了高斯核函数的应用。最后,提到了序列最小化优化算法(SMO),用于高效解决大规模样本时的优化问题。
摘要由CSDN通过智能技术生成

一、拉格朗日对偶性

在学习SVM之前,首先要理解什么是拉格朗日对偶性,
1.原始问题
假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑yue束优化问题
这里写图片描述
称此问题为原始问题。

2.由原始问题引入的拉格朗日函数
这里写图片描述
这里x=(x(1),x(2),…x(n))属于Rn,ai,βi是拉个朗日乘子,ai>=0。另外,考虑以下问题:
这里写图片描述
显然,L(x,ai,βi)的第三个多项式为0,若是上述问题求得最大值,只有当ai取0值的情况下可以得到.当上述问题取得最大值时,则θp(x)=f(x).因此,有如下关系式:
这里写图片描述
如果此时再考虑最小化问题
这里写图片描述
这个问题与原始问题是等价的,他们有相同的解.因此可以把原始问题当作广义拉格朗日函数的极大极少问题.

3.对偶问题
我们称以下问题为上述C.8问题的对偶问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值