- 博客(7)
- 收藏
- 关注
原创 装修Agent助手demo
本文介绍了问答项目演示的技术方案,包含四个核心模块:1)产品架构图展示整体设计;2)使用Cursor工具实现意图识别与问答功能;3)基于XGBoost的意图识别系统,支持手动/自动模式切换;4)最终采用RAG框架结合DeepSeek-R1-67B大模型,实现流式回答输出。该项目为原创演示方案,可根据需求进行效果展示。
2025-12-21 13:48:46
201
原创 装修行业AI全链路Agent(C/B双端闭环)
【摘要】XX网推出"AI全链路智脑"项目,包含C端《装个家》AI助手和B端《电销宝》销售智脑,打造装修行业闭环生态。项目通过RAG知识库实现数据互通,覆盖从线索获取到施工验收全流程,采用统一AI人格"阿狸"提供专业服务。核心功能包括实时电话辅助、报价体检、工长匹配等,目标实现线索转化率≥50%、签单率提升35%+。采用分阶段实施策略,首批在上海测试,预计6个月内完成核心功能上线,年化利润增量目标2000万元。项目创新点在于AI赋能全链路,解决行业信息不对称和转化效率低
2025-12-05 21:39:14
851
原创 《XX网电销宝 —— 基于RAG的装修商机实时成交智脑》
摘要:该PRDv4.0文档详细描述了一个基于RAG技术的B2B2C装修话术辅助系统。产品旨在通过实时语音转写、智能话术推荐、业主信息提取、异议处理等核心功能,将客服话术水平提升至专业顾问级别,目标实现商机到预约量房转化率从行业平均8-12%提升至50%以上。系统采用阿里云语音转写+通义千问大模型的技术架构,包含12类装修知识库,预计开发周期8周,上线后可使客单价提升43%,年化利润增加1200-3200万元。产品特色包括极简UI设计、实时合规检测和销冠话术克隆等创新功能。
2025-12-01 20:16:39
760
原创 快递包裹入库智能风险预警策略(两种BERT落地方式)
XX快递超市日均处理包裹量超过50万件,其中包含大量需要特殊处理的商品类型。特殊商品识别困难:易碎品、生鲜品等特殊商品在入库过程中破损率、变质率居高不下人工识别效率低下:依赖人工识别特殊商品,单店日均耗时3-4小时客户体验受损:特殊处理要求执行不到位导致客户投诉率上升多源数据利用不足:多快递公司,商品标题、备注信息等数据未充分利用本项目为风险分级分类任务python"""分类系统配置管理"""# 风险导向的类别定义。
2025-11-19 00:44:56
456
原创 《基于BERT模型的快递工单智能分类与归因分析项目》
摘要:本项目针对XX快递全国20万家快递超市的异常包裹反馈处理需求,利用NLP技术开发智能分类系统。通过1000万条多源数据训练,实现对10类异常问题(如丢件、拒收、破损等)的自动分类,目标准确率达85%以上。项目采用FastText和BERT两种模型方案,配套完整的数据清洗流程(包括统一编码、特殊字符处理、同义词归一等)和类别平衡策略。系统上线后预计将人工处理成本降低20%,时效从小时级提升至分钟级,最终构建面向"最后一公里"的智能异常件管理平台。
2025-11-15 21:03:57
952
原创 深度学习核心公式速查表(带案例)
本文对神经网络中常用的激活函数、损失函数和优化算法进行串讲。案例直观地说明了这些核心组件如何共同促进神经网络的学习和优化。
2025-10-17 09:07:48
923
原创 **XX网《高意向用户挖掘——基于机器学习模型洞察》
【项目摘要】装修平台为应对C端用户报名转化率低的问题,启动高意向用户预测模型项目,旨在从未达传统标准的85%用户中挖掘潜在需求。项目采用XGBoost模型,整合用户填报信息、房屋数据、平台行为及三方渠道等4类特征,通过目标编码/SMOTE/RFECV等技术处理高基数特征与样本不均衡问题。模型要求精准率>75%、AUC>0.8,预计实现每日有效提单量提升10-15%,并通过A/B测试验证效果。
2025-10-12 20:29:39
815
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅