分布式搜索引擎2——深入elasticsearch

数据聚合

聚合的分类

聚合(aggregations)可以实现对文档数据的统计、分析、运算。聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats: 同时求max、min、avg、sum等
  • 管道(pipeline)聚合:其它聚合的结果为基础做聚合

Bucket聚合

DSL实现

现在,我们要统计所有数据中的酒店品牌有几种,此时可以根据酒店品牌的名称做聚合。

类型为term类型,DSL示例:

GET/hotel/_search{
	"size": 0,//设置size为0,结果中不包含文档,只包含聚合结果
    "aggs " : {//定义聚合
        "brandAgg": {//给聚合起个名字
            "terms" : {//聚合的类型,按照品牌值聚合,所以选择term
                "field" : "brand",//参与聚合的字段
                "size" : 20//希望获取的聚合结果数量
            }   
        }   
    }    
}

聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。我们可以修改结果排序方式:

# 聚合
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc"
        }, 
        "size": 20
      }
    }
  }
}

限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 //只对价格低于200的做聚合
      }
    }
  }, 
  "size": 0,
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

Metrics聚合

DSL实现

例如,我们要求获取每个品牌的用户评分的min、max、avg等值.

我们可以利用stats聚合:

GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20,
        "order": {
          "score_stats.avg": "desc"//根据平均评分降序排列
        }
      },
      "aggs": {//是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": {//聚合名称
          "stats": {//聚合类型,这里stats可以计算min、max、avg等
            "field": "score"//聚合字段,这里是score
          }
        }
      }
    }
  }
}

RestAPI实现聚合

我们以品牌聚合为例,演示下Java的RestClient使用,先看请求组装:

1

再看下聚合结果解析

2

@Test
void testAggregation() throws IOException {
    //1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    //2.准备DSL
    //2.1设置size
    request.source().size(0);
    request.source().aggregation(AggregationBuilders
            .terms("brandAgg")
            .field("brand")
            .size(20)
    );
    //3.发出请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    //4.解析结果
    Aggregations aggregations = response.getAggregations();
    Terms brandAgg = aggregations.get("brandAgg");
    List<? extends Terms.Bucket> buckets = brandAgg.getBuckets();
    for (Terms.Bucket bucket : buckets) {
        String key = bucket.getKeyAsString();
        long docCount = bucket.getDocCount();
        System.out.println(key + ":" + docCount);
    }
}

聚合案列

案例
在lUserService中定义方法,实现对品牌、城市、星级的聚合
需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:

在lUserService中定义一个方法,实现对品牌、城市、星级的聚合,方法声明如

/**
 * 查询城市、星级、品牌的聚合结果
 * @return 聚合结果,格式:["城市":["上海","北京""],"品牌" :["如家","希尔顿"]}
 */
Map<String, List<String>> filters();
@Override
public Map<String, List<String>> filters() {
    try {
        //1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        //2.准备DSL
        //2.1设置size
        request.source().size(0);
        //2.2聚合
        buildAggregation(request);
        //3.发出请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        //4.解析结果
        Map<String, List<String>> results = new HashMap<>();
        Aggregations aggregations = response.getAggregations();
        //根据名称获取聚合结果
        List<String> brandList = getAggByName(aggregations, "brandAgg");
        List<String> cityList = getAggByName(aggregations, "cityAgg");
        List<String> starList = getAggByName(aggregations, "starAgg");
        //放入map
        results.put("品牌", brandList);
        results.put("城市", cityList);
        results.put("星级", starList);

        return results;
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

private static List<String> getAggByName(Aggregations aggregations, String name) {
    Terms brandAgg = aggregations.get(name);
    List<? extends Terms.Bucket> buckets = brandAgg.getBuckets();
    List<String> brandList = new ArrayList<>();
    for (Terms.Bucket bucket : buckets) {
        //获取key
        String key = bucket.getKeyAsString();
        brandList.add(key);
    }
    return brandList;
}

private void buildAggregation(SearchRequest request) {
    request.source().aggregation(AggregationBuilders
            .terms("brandAgg")
            .field("brand")
            .size(20)
    );
    request.source().aggregation(AggregationBuilders
            .terms("cityAgg")
            .field("city")
            .size(20)
    );
    request.source().aggregation(AggregationBuilders
            .terms("starAgg")
            .field("starName")
            .size(20)
    );
}

对接前端接口

前端页面会向服务端发起请求,查询品牌、城市、星级等字段的聚合结果:

3.1

3.2

可以看到请求参数与之前search时的RequestParam完全一致,这是在限定聚合时的文档范围。
例如:用户搜索“外滩”,价格在300~600,那聚合必须是在这个搜索条件基础上完成。

因此我们需要:

  1. 编写controller接口,接收该请求

    @PostMapping("/filters")
    public Map<String, List<String>> getFilters(@RequestBody RequestParams params) {
        return hotelService.filters(params);
    }
    
  2. 修改IHotelServicet#getFilters()方法,添加RequestParam参数

    Map<String, List<String>> filters(RequestParams params);
    
  3. 修改getFilters方法的业务,聚合时添加query条件

        @Override
        public Map<String, List<String>> filters(RequestParams params) {
            try {
                //1.准备Request
                SearchRequest request = new SearchRequest("hotel");
                //2.准备DSL
                //2.1query
                buildBasicQuery(params, request);
                //2.2设置size
                request.source().size(0);
                //2.3聚合
                buildAggregation(request);
                //3.发出请求
                SearchResponse response = client.search(request, RequestOptions.DEFAULT);
                //4.解析结果
                Map<String, List<String>> results = new HashMap<>();
                Aggregations aggregations = response.getAggregations();
                //根据名称获取聚合结果
                List<String> brandList = getAggByName(aggregations, "brandAgg");
                List<String> cityList = getAggByName(aggregations, "cityAgg");
                List<String> starList = getAggByName(aggregations, "starAgg");
                //放入map
                results.put("brand", brandList);
                results.put("city", cityList);
                results.put("starName", starList);
    
                return results;
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        }
    
        private static List<String> getAggByName(Aggregations aggregations, String name) {
            Terms brandAgg = aggregations.get(name);
            List<? extends Terms.Bucket> buckets = brandAgg.getBuckets();
            List<String> brandList = new ArrayList<>();
            for (Terms.Bucket bucket : buckets) {
                //获取key
                String key = bucket.getKeyAsString();
                brandList.add(key);
            }
            return brandList;
        }
    
        private void buildAggregation(SearchRequest request) {
            request.source().aggregation(AggregationBuilders
                    .terms("brandAgg")
                    .field("brand")
                    .size(20)
            );
            request.source().aggregation(AggregationBuilders
                    .terms("cityAgg")
                    .field("city")
                    .size(20)
            );
            request.source().aggregation(AggregationBuilders
                    .terms("starAgg")
                    .field("starName")
                    .size(20)
            );
        }
    
        private void buildBasicQuery(RequestParams params, SearchRequest request) throws IOException {
            //1.构建BooleanQuery
            BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
            //关键字搜索
            String key = params.getKey();
            if (key == null || "".equals(key)) {
                boolQuery.must(QueryBuilders.matchAllQuery());
            } else {
                boolQuery.must(QueryBuilders.matchQuery("all", key));
            }
            //city精确匹配
            String city = params.getCity();
            if (!(city == null || "".equals(city))) {
                boolQuery.filter(QueryBuilders.termQuery("city", city));
            }
            //brand精确匹配
            String brand = params.getBrand();
            if (!(brand == null || "".equals(brand))) {
                boolQuery.filter(QueryBuilders.termQuery("brand", brand));
            }
            //startName精确查询
            String startName = params.getStartName();
            if (!(startName == null || "".equals(startName))) {
                boolQuery.filter(QueryBuilders.termQuery("startName", startName));
            }
            //价格
            Integer minPrice = params.getMinPrice();
            Integer maxPrice = params.getMaxPrice();
            if (minPrice != null && maxPrice != null) {
                boolQuery.filter(QueryBuilders.rangeQuery("price").gte(minPrice).lte(maxPrice));
            }
            //2.算分控制
            FunctionScoreQueryBuilder functionScoreQuery =
                    QueryBuilders.functionScoreQuery(
                            //原始查询,相关性算分的查询
                            boolQuery,
                            //function score的数组
                            new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
                                    //其中的一个function score元素
                                    new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                                            //过滤条件
                                            QueryBuilders.termQuery("isAD", true),
                                            //算分函数
                                            ScoreFunctionBuilders.weightFactorFunction(10)
                                    )
                            });
            request.source().query(functionScoreQuery);
        }
    }
    

自动补全

拼音分词器

自动补全需求说明

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:

4

使用拼音分词

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

安装方式与IK分词器一样,分三步:

  1. 解压
  2. 上传到虚拟机中,elasticsearch的plugin目录
  3. 重启elasticsearch
  4. 测试
# 测试拼音分词器
POST /_analyze
{
  "text": "如家酒店真不错",
  "analyzer": "pinyin"
}
{
  "tokens" : [
    {
      "token" : "ru",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "rjjdzbc",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "jia",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "jiu",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 2
    },
    {
      "token" : "dian",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 3
    },
    {
      "token" : "zhen",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 4
    },
    {
      "token" : "bu",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 5
    },
    {
      "token" : "cuo",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 6
    }
  ]
}

自定义分词器

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

5

我们可以在创建索引库时,通过settings来配置自定义的analyzer(分词器)∶

PUT /test{
	"settings": {
        "analysis" : {
            "analyzer" : { //自定义分词器
                "my_analyzer" : {//分词器名称
                    "tokenizer" : "ik_max_word",
                    "filter" : "pinyin"
                }
            }
        }
    }
}

此处的拼音分词器还需要进行进一步配置:

PUT /test{
    "settings": {
        "analysis": {
            "analyzer" : { //自定义分词器
                "my_analyzer" : {//分词器名称
                    "tokenizer" : "ik_max_word",
                    "filter": "py"
                }
            },
            "filter": { //自定义tokenizer filter
                "py": {//过滤器名称"type" : "pinyin",//过滤器类型,这里是pinyin
                    "keep_full_pinyin" : false,
                    "keep_joined_full_pinyin": true,
                    "keep_original" : true,
                    "limit_first_letter_length": 16,
                    "remove_duplicated_term" : true,
                    "none_chinese_pinyin_tokenize": false
                }
            }
        }
    }
}

拼音分词器适合在创建倒排索引的时候使用,但不能在搜索的时候使用。

6

因此字段在创建倒排索引时应该用my_analyzer分词器;字段在搜索时应该使用ik_smart分词器;

PUT /test{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": {
        "py": {...}
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

自动补全查询

completion suggester查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。
//创建索引库PUT test
{
  "mappings": {
    "properties": {
      "title": {
        "type": "completion"
      }
    }
  }
}
//示例数据
POST test/ _doc
{
  "title" : ["Sony","WH-1000XM3"]
}
POST test/_doc
{
  "title" : ["SK-II""PITERA"]
}
POST test/_doc
{
  "title" : ["Nintendo","switch"]
}

查询语法如下:

//自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s",//关键字
      "completion": {
        "field": "title",//补全查询的字段
        "skip_duplicates": true//跳过重复的
        "size": 10//获取前10条结果
      }
    }
  }
}

自动补全对字段的要求:

  • 类型是completion类型
  • 字段值是多词条的数组

实现酒店搜索框

案例
实现hotel索引库的自动补全、拼音搜索功能
实现思路如下:

  1. 修改hotel索引库结构,设置自定义拼音分词器

  2. 修改索引库的name、all字段,使用自定义分词器

  3. 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器

    DELETE /hotel
    # 酒店数据索引库
    PUT /hotel
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "text_anlyzer": {
              "tokenizer": "ik_max_word",
              "filter": "py"
            },
            "completion_analyzer": {
              "tokenizer": "keyword",
              "filter": "py"
            }
          },
          "filter": {
            "py": {
              "type": "pinyin",
              "keep_full_pinyin": false,
              "keep_joined_full_pinyin": true,
              "keep_original": true,
              "limit_first_letter_length": 16,
              "remove_duplicated_term": true,
              "none_chinese_pinyin_tokenize": false
            }
          }
        }
      },
      "mappings": {
        "properties": {
          "id":{
            "type": "keyword"
          },
          "name":{
            "type": "text",
            "analyzer": "text_anlyzer",
            "search_analyzer": "ik_smart",
            "copy_to": "all"
          },
          "address":{
            "type": "keyword",
            "index": false
          },
          "price":{
            "type": "integer"
          },
          "score":{
            "type": "integer"
          },
          "brand":{
            "type": "keyword",
            "copy_to": "all"
          },
          "city":{
            "type": "keyword"
          },
          "starName":{
            "type": "keyword"
          },
          "business":{
            "type": "keyword",
            "copy_to": "all"
          },
          "location":{
            "type": "geo_point"
          },
          "pic":{
            "type": "keyword",
            "index": false
          },
          "all":{
            "type": "text",
            "analyzer": "text_anlyzer",
            "search_analyzer": "ik_smart"
          },
          "suggestion":{
              "type": "completion",
              "analyzer": "completion_analyzer"
          }
        }
      }
    }
    
  4. 给HotelDoc类添加suggestion字段,内容包含brand、business

    
    @Data
    @NoArgsConstructor
    public class HotelDoc {
        private Long id;
        private String name;
        private String address;
        private Integer price;
        private Integer score;
        private String brand;
        private String city;
        private String starName;
        private String business;
        private String location;
        private String pic;
        private Object distance;
        private String isAD;
        private List<String> suggestion;
    
        public HotelDoc(Hotel hotel) {
            this.id = hotel.getId();
            this.name = hotel.getName();
            this.address = hotel.getAddress();
            this.price = hotel.getPrice();
            this.score = hotel.getScore();
            this.brand = hotel.getBrand();
            this.city = hotel.getCity();
            this.starName = hotel.getStarName();
            this.business = hotel.getBusiness();
            this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
            this.pic = hotel.getPic();
            if (this.business.contains("/")) {
                // business有多个值,进行切割 like:江湾/五角场商业区
                String[] arr = this.business.split("/");
                // 添加元素
                this.suggestion = new ArrayList<>();
                this.suggestion.add(this.brand);
                Collections.addAll(this.suggestion, arr);
            } else if (this.business.contains("、")) {
                // business有多个值,进行切割 like:江湾、五角场商业区
                String[] arr = this.business.split("、");
                // 添加元素
                this.suggestion = new ArrayList<>();
                this.suggestion.add(this.brand);
                Collections.addAll(this.suggestion, arr);
            } else {
                this.suggestion = Arrays.asList(this.brand, this.business);
            }
        }
    }
    
  5. 重新导入数据到hotel库

    运行ElasticsearchDocumentTest中的testBulkRequest

SDL测试

# 自动补全查询
POST /hotel/_search
{
  "suggest": {
    "title_suggest": {
      "text": "h", 
      "completion": {
        "field": "suggestion", 
        "skip_duplicates": true,
        "size": 10 
      }
    }
  }
}

7

RestAPI实现

发送请求

8

结果处理

9

@Test
void testSuggest() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source().suggest(new SuggestBuilder().addSuggestion(
            "suggestion",
            SuggestBuilders.completionSuggestion("suggestion")
                    .prefix("h")
                    .skipDuplicates(true)
                    .size(10)
    ));
    // 3.发起请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析结果
    Suggest suggest = response.getSuggest();
    // 4.1根据名称获取补全结果
    CompletionSuggestion suggestion = suggest.getSuggestion("suggestion");
    // 4.2获取options并遍历
    for (Suggest.Suggestion.Entry.Option options : suggestion.getOptions()) {
        // 4.3获取一个option 中的text,也就是补全的词条
        String text = options.getText().string();
        System.out.println(text);
    }
}

运行结果:

10

案例
实现酒店搜索页面输入框的自动补全
查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:

实现案列

案例
实现酒店搜索页面输入框的自动补全

查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:

11

实现:

@GetMapping("/suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix){
    return hotelService.getSuggestions(prefix);
}
List<String> getSuggestions(String prefix);
@Override
public List<String> getSuggestions(String prefix) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        request.source().suggest(new SuggestBuilder().addSuggestion(
                "suggestion",
                SuggestBuilders.completionSuggestion("suggestion")
                        .prefix(prefix)
                        .skipDuplicates(true)
                        .size(10)
        ));
        // 3.发起请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析结果
        Suggest suggest = response.getSuggest();
        // 4.1根据名称获取补全结果
        CompletionSuggestion suggestion = suggest.getSuggestion("suggestion");
        // 4.2获取options并遍历
        List<String> list = new ArrayList<>(suggestion.getOptions().size());
        for (Suggest.Suggestion.Entry.Option options : suggestion.getOptions()) {
            // 4.3获取一个option 中的text,也就是补全的词条
            String text = options.getText().string();
            list.add(text);
        }
        return list;
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

数据同步

数据同步问题分析

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

在微服务中,负责酒店管理(操作mysql )的业务与负责酒店搜索(操作elasticsearch )的业务可能在两个不同的微服务上,数据同步该如何实现呢?

方案一:同步调用

12

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方案二:异步通知

13

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方案三:监听binlog

14

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

案例

案例 利用MQ实现mysql与elasticsearch数据同步

利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。

步骤:

  • 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD

  • 声明exchange、queue、RoutingKey

    package cn.itcast.hotel.constants;
    
    public class MqConstants {
        /**
         * 交换机
         */
        public static final String HOTEL_EXCHANGE = "hotel.topic";
        /**
         * 监听新增和修改的队列
         */
        public static final String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
        /**
         * 监听删除的队列
         */
        public static final String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
        /**
         * 新增或修改的RoutingKey
         */
        public static final String HOTEL_INSERT_KEY = "hotel.insert";
        /**
         * 删除的RoutingKey
         */
        public static final String HOTEL_DELETE_KEY = "hotel.delete";
    }
    
    package cn.itcast.hotel.config;
    
    import cn.itcast.hotel.constants.MqConstants;
    import org.springframework.amqp.core.Binding;
    import org.springframework.amqp.core.BindingBuilder;
    import org.springframework.amqp.core.Queue;
    import org.springframework.amqp.core.TopicExchange;
    import org.springframework.context.annotation.Bean;
    import org.springframework.context.annotation.Configuration;
    
    @Configuration
    public class MqConfig {
        @Bean
        public TopicExchange topicExchange() {
            return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
        }
    
        @Bean
        public Queue insertQueue() {
            return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
        }
    
        @Bean
        public Queue deleteQueue() {
            return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
        }
    
        @Bean
        public Binding insertQueueBinding() {
            return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);
        }
    
        @Bean
        public Binding deleteQueueBinding() {
            return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);
        }
    
    }
    
  • 在hotel-admin中的增、删、改业务中完成消息发送

    @PostMapping
    public void saveHotel(@RequestBody Hotel hotel) {
        hotelService.save(hotel);
        //发送mq消息
        rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE, MqConstants.HOTEL_INSERT_KEY, hotel.getId());
    }
    
    @PutMapping()
    public void updateById(@RequestBody Hotel hotel) {
        if (hotel.getId() == null) {
            throw new InvalidParameterException("id不能为空");
        }
        hotelService.updateById(hotel);
        //发送mq消息
        rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE, MqConstants.HOTEL_INSERT_KEY, hotel.getId());
    }
    
    @DeleteMapping("/{id}")
    public void deleteById(@PathVariable("id") Long id) {
        hotelService.removeById(id);
        //发送mq消息
        rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE, MqConstants.HOTEL_DELETE_KEY, id);
    }
    
  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据

    package cn.itcast.hotel.mq;
    
    import cn.itcast.hotel.constants.MqConstants;
    import cn.itcast.hotel.service.IHotelService;
    import org.springframework.amqp.rabbit.annotation.RabbitListener;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.stereotype.Component;
    
    @Component
    public class HotelListener {
    
        @Autowired
        private IHotelService hotelService;
    
        /**
         * 监听酒店新增或修改的业务
         * @param id 酒店id
         */
        @RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)
        private void listenHotelInsertOrUpdate(Long id) {
            hotelService.insertById(id);
        }
    
        /**
         * 监听酒店删除的业务
         * @param id 酒店id
         */
        @RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)
        private void listenHotelDelete(Long id) {
            hotelService.deleteById(id);
        }
    }
    
    void deleteById(Long id);
    
    void insertById(Long id);
    
    @Override
    public void deleteById(Long id) {
        try {
            // 1.准备Request
            DeleteRequest request = new DeleteRequest("hotel", id.toString());
            // 2.发送请求
            client.delete(request, RequestOptions.DEFAULT);
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }
    
    @Override
    public void insertById(Long id) {
        try {
            // 0.根据id查酒店数据
            Hotel hotel = getById(id);
            //转换为文档类型
            HotelDoc hotelDoc = new HotelDoc(hotel);
    
            //1.准备Request对象
            IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
            //2.准备Json文档
            request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);
            //3.发送请求
            client.index(request, RequestOptions.DEFAULT);
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }
    
  • 启动并测试数据同步功能

15

elasticsearch集群

搭建ES集群

ES集群结构

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点

  • 单点故障问题:将分片数据在不同节点备份( replica )

16

搭建ES集群

我们计划利用3个docker容器模拟3个es的节点。

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic
  es03:
    image: elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic
    ports:
      - 9202:9200
volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

通过docker-compose启动集群:

docker-compose up -d

集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro

注意:在 Java 9 及以上版本中,模块化系统的安全性增强导致了 java.lang.ClassLoader.defineClass 方法默认不可访问。因此,在 Windows 系统中使用 .\cerebro.bat 启动 Cerebro 时,需要通过添加 --add-opens 参数来打开此方法的访问权限,才能避免 java.lang.reflect.InaccessibleObjectException 异常。所以此处采用jdk1.8运行

创建索引库

1)利用kibana的DevTools创建索引库

在DevTools中输入指令:

PUT /itcast
{
  "settings": {
    "number_of_shards": 3, // 分片数量
    "number_of_replicas": 1 // 副本数量
  },
  "mappings": {
    "properties": {
      // mapping映射定义 ...
    }
  }
}
2)利用cerebro创建索引库

利用cerebro还可以创建索引库:

17

填写索引库信息:

18

点击右下角的create按钮:

19

查看分片效果

回到首页,即可查看索引库分片效果:

20

ES集群的节点角色

elasticsearch中集群节点有不同的职责划分:

21

elasticsearch中的每个节点角色都有自己不同的职责,因此建议集群部署时,每个节点都有独立的角色。

22

集群脑裂问题

默认情况下,每个节点都是master eligible节点,因此一旦master节点宕机,其它候选节点会选举一个成为主节点。当主节点与其他节点网络故障时,可能发生脑裂问题。

为了避免脑裂,需要要求选票超过(eligible节点数量+1)/2才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

ES集群的分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

23

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

24

ES集群的分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果并处理为最终结果集返回给用户

25

ES集群的故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

26

故障转移:

  • master宕机后,EligibleMaster选举为新的主节点。
  • master节点监控分片、节点状态,将故障节点上的分片转移到正常节点,确保数据安全。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值