《统计学习方法》隐马尔可夫模型 学习过程 Baum-Welch算法中几个公式的证明

证明P182页 3.(1)中公式

\sum_{I}log\pi_{i_1}P(O, I|\overline{\lambda}) = \sum_{i = 1}^{N}log\pi_{i}P(O,i_1=i|\overline{\lambda})

证明:

首先明确上述公式中P(O,i_1=i|\overline{\lambda})表示的是在参数\overline{\lambda}下,生成的输出序列为O,隐状态序列的第1个位置为i,隐状态序列的第2到n个位置随便是什么都行的概率。所以P(O,i_1=i|\overline{\lambda})表示成P(O,i_1=i|\overline{\lambda}) = \sum_{I^*}P(O, i_1=i,I^*|\overline{\lambda})更清晰直观。

因此,有

\begin{align*} \sum_{I}log\pi_{i_1}P(O, I|\overline{\lambda})&= \sum_{i_1 = 1}^{N}\sum_{i_2 = 1}^{N}...\sum_{i_n = 1}^{N}P(O, I|\overline{\lambda})\\ &=\sum_{i=1}^{N}\sum_{I^*}P(O, i_1=i, I^*|\overline{\lambda})\\ &=\sum_{i = 1}^{N}P(O, i_1=i| \overline{\lambda}) \end{align*}

 

证明P182页 3. (2) 中公式

\sum_{I}(\sum_{i = 1}^{T - 1}loga_{i_t, i_{t +1}})P(O, I | \overline{\lambda})=\sum_{i = 1}^{N}\sum_{j = 1}^{N}\sum_{t = 1}^{T-1}loga_{ij}P(O, i_t=i, i_{t +1} = j| \overline{\lambda})

同3. (1)中给出的说明,P(O, i_t=i, i_{t +1} = j| \overline{\lambda})其实表达的含义应该是\sum_{I*}P(O, i_t=i, i_{t +1} = j, I^*| \overline{\lambda})I^*代表的是除了位置t和位置t+1之外的隐状态序列中其他位置的取值。

因此,有

\begin{align*} \sum_{I}(\sum_{t = 1}^{T - 1}loga_{i_t, i_{t +1}})P(O, I | \overline{\lambda}) &=\sum_{I}\sum_{i = 1}^{T - 1}loga_{i_t, i_{t +1}}P(O, I | \overline{\lambda})\\ &=\sum_{t = 1}^{T - 1}\sum_{I}loga_{i_t, i_{t +1}}P(O, I | \overline{\lambda})\\ &=\sum_{t = 1}^{T - 1}\sum_{i = 1}^{N}\sum_{j = 1}^{N}\sum_{I^*}loga_{ij}P(O, i_t=i, i_{t + 1}=j , I^*| \overline{\lambda})\\ &=\sum_{t = 1}^{T - 1}\sum_{i = 1}^{N}\sum_{j = 1}^{N}loga_{ij}\sum_{I^*}P(O, i_t=i, i_{t + 1}=j , I^*| \overline{\lambda})\\ &=\sum_{t = 1}^{T - 1}\sum_{i = 1}^{N}\sum_{j = 1}^{N}loga_{ij}P(O, i_t = i, i_{t + 1}=j | \overline{\lambda})\\ &=\sum_{i = 1}^{N}\sum_{j = 1}^{N}\sum_{t = 1}^{T - 1}loga_{ij}P(O, i_t = i, i_{t + 1}=j | \overline{\lambda}) \end{align*}

 

证明P182页公式3. (3)公式

\sum_{I}(\sum_{t = 1}^{T}logb_{i_t}(o_t))P(O,I|\overline{\lambda})=\sum_{j = 1}^{N}\sum_{t = 1}^{T}logb_j(o_t)P(O, i_t=j| \overline{\lambda})

同3. (1)中给出的说明,P(O, i_t=j| \overline{\lambda})其实表达的含义应该是\sum_{I*}P(O, i_t=j, I^*|\overline{\lambda})I^*代表的是除了位置t之外的隐状态序列中其他位置的取值。

因此,有

\begin{align*} \sum_{I}(\sum_{t = 1}^{T}logb_{i_t}(o_t))P(O,I|\overline{\lambda}) &=\sum_{I}\sum_{t = 1}^{T}logb_{i_t}(o_t)P(O, I | \overline{\lambda})\\ &=\sum_{t = 1}^{T}\sum_{I}logb_{i_t}(o_t)P(O, I | \overline{\lambda})\\ &=\sum_{t = 1}^{T}\sum_{j = 1}^{N}\sum_{I*}logb_i(o_t)P(O, i_t=j, I^*|\overline{\lambda})\\ &=\sum_{t = 1}^{T}\sum_{j = 1}^{N}logb_i(o_t)\sum_{I*}P(O, i_t=j, I^*|\overline{\lambda})\\ &=\sum_{t = 1}^{T}\sum_{j = 1}^{N}logb_i(o_t)P(O, i_t=j|\overline{\lambda})\\ &=\sum_{j = 1}^{N}\sum_{t = 1}^{T}logb_j(o_t)P(O, i_t=j| \overline{\lambda}) \end{align*}

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值