拓扑序列(复习)

在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:

每个顶点出现且只出现一次。

若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。

有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。

这题需要用到模拟队列用p[N],tt,hh表示

首先将每个节点的度标记存储起来,然后先将度为0的节点存到队列里

然后队列里进行循环对每一个节点进行判断,对它的后继节点的度–,如果这个节点的度为0就把它加入队列中

最后得到的队列就是我们的结果(如果每个节点都被加入到了队列中)

 

 

/**
*  ┏┓   ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃       ┃
* ┃   ━   ┃ ++ + + +
*  ████━████+
*  ◥██◤ ◥██◤ +
* ┃   ┻   ┃
* ┃       ┃ + +
* ┗━┓   ┏━┛
*   ┃   ┃ + + + +Code is far away from  
*   ┃   ┃ + bug with the animal protecting
*   ┃    ┗━━━┓ 神兽保佑,代码无bug 
*   ┃  	    ┣┓
*    ┃        ┏┛
*     ┗┓┓┏━┳┓┏┛ + + + +
*    ┃┫┫ ┃┫┫
*    ┗┻┛ ┗┻┛+ + + +
*/

#include<cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <math.h>
#include<vector>
#include<queue>
#include<map>
#define ll long long 
using namespace std;

const int N=1000000+100;
int n ,m;
ll s[N];
int h[N],e[N],ne[N],idx;
int d[N],q[N];

void add(int a,int b)
{
	ne[idx]=h[a];
	e[idx]=b;
	h[a]=idx++;
}

int top()
{
	int hh=0,tt=-1;
	for(int i =1;i<=n;i++)
	if(!d[i])q[++tt]=i;
	while(hh<=tt)
	{
		int t =q[hh++];	
		for(int i =h[t];i!=-1;i=ne[i])
		{
			int j=e[i];
			d[j]--;
			if(!d[j])q[++tt]=j;
		}
	}
	return tt==n-1;
}

int main()
{
	cin>>n>>m;
	memset(h,-1,sizeof h);
	for(int i =1;i<=m;i++)
	{
		int a,b;
		cin>>a>>b;
		add(a,b);
		d[b]++;
	}

	if(top())
	{
		for(int i =0;i<n;i++)
		cout<<q[i]<<" ";
	}
	else 
	cout<<"-1";

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值