思路:首先我们每次都需要输出在每次得到道具的时候能通过多少关,并且一共最多就1e5个区间,那么我们可以把需要合并的区间合并起来,但是如果合并的时候遍历所有的区间那么时间就很可能超时,那么我们使用一个优先队列,左区间按从小到大排序,然后每次取前面的两个区间,看能不能合并,如果能就合并,不能就直接退出循环。
那么我们在当前情况下能通过的关卡数就是队列的第一个区间,能通关的关卡数也就可以得到了,实行的操作数也不会很多,每次比较两个人能通过的关卡数然后比较一下就可以得到答案了。
然后具体的实现可以用优先队列+pair,然后优先队列的排序默认的就是第一个元素从小到大排序,所以不需要进行过多的操作。
代码:
/**
* ┏┓ ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃ ┃
* ┃ ━ ┃ ++ + + +
* ████━████+
* ◥██◤ ◥██◤ +
* ┃ ┻ ┃
* ┃ ┃ + +
* ┗━┓ ┏━┛
* ┃ ┃ + + + +Code is far away from
* ┃ ┃ + bug with the animal protecting
* ┃ ┗━━━┓ 神兽保佑,代码无bug
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━┳┓┏┛ + + + +
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛+ + + +
*/
#include<cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <math.h>
#include<vector>
#include<queue>
#include<map>
#define sc_int(x) scanf("%d", &x)
#define sc_ll(x) scanf("%lld", &x)
#define pr_ll(x) printf("%lld", x)
#define pr_ll_n(x) printf("%lld\n", x)
#define pr_int_n(x) printf("%d\n", x)
#define ll long long
using namespace std;
const int N=1000000+100;
int n ,m,h;
int s[N];
typedef pair<int,int>PII;
struct lk{
int l;
int r;
}cnt[N],bnt[N];
void slove( )
{
int t;
sc_int(n);
for(int i =1;i<=n;i++){
sc_int(cnt[i].l),sc_int(cnt[i].r);
}
for(int i =1;i<=n;i++){
sc_int(bnt[i].l),sc_int(bnt[i].r);
}
priority_queue<PII,vector<PII>,greater<PII>>q,p;
for(int i=1;i<=n;i++)
{
q.push({cnt[i].l,cnt[i].r}),p.push({bnt[i].l,bnt[i].r});
while(q.size()>=2)
{
PII A,B,C;
A=q.top();
q.pop();
B=q.top();
q.pop();
if(A.second+1>=B.first)
{
C.first=A.first,C.second=max(B.second,A.second);
q.push(C);
}
else {
q.push(A),q.push(B);
break;
}
}
while(p.size()>=2)
{
PII A,B,C;
A=p.top();
p.pop();
B=p.top();
p.pop();
if(A.second+1>=B.first)
{
C.first=A.first,C.second=max(B.second,A.second);
p.push(C);
}
else {
p.push(A),p.push(B);
break;
}
}
int sum1=0,sum2=0;
sum1=q.top().second-q.top().first+1,sum2=p.top().second-p.top().first+1;
if(q.top().first!=1)sum1=0;
if(p.top().first!=1)sum2=0;
// cout<<sum1<<" "<<sum2<<endl;
if(sum1>sum2) cout<<"sa_win!\n"<<sum1-sum2<<endl;
else if(sum2>sum1)cout<<"ya_win!\n"<<sum2-sum1<<endl;
else cout<<"win_win!\n"<<0<<endl;
}
}
int main()
{
int t;
// sc_int(t);
// while(t--)
slove();
return 0;
}