遥测数据采集工具Grafana Alloy

介绍

Alloy是Grafana产品公司旗下的一款新主推遥测数据采集工具,Grafana Alloy也是一个开源OpenTelemetry收集器,具有内置 Prometheus管道并支持指标、日志、跟踪和配置文件。Alloy支持为OTEL、Prometheus、Pyroscope、Loki等服务提供许多指标、日志、跟踪等原生数据管道以及数据采集功能。Alloy在Grafana产品生态中,用于替代Promital、Agent两个采集程序,Alloy提供了强大和灵活的模块组件配置功能,支持远比原Agent工具更多的数据格式处理功能和更多样的采集来源端、多平台数据转换能力;并且支持自定义配置组件、数据过滤、数据管道转发、本地配置、云端配置等,官方声明Alloy对更多平台协议数据兼容性更好、安全性和数据配置调试能力更强;

注:推出Alloy的同时官方也声明,不在维护Grafana Agent现有程序,后续Grafana Agent已被弃用,并将会持续到2025年10月31日为止,在2025年11月1日终止使用(EOL);官方建议迁移到Grafana Alloy,因此还在用Grafana Agent的同学,也因该尽快迁移到Grafana Alloy采集工具上;

官网

官网:Grafana Alloy | OpenTelemetry Collector distribution

文档:Grafana Alloy | Grafana Alloy documentation

下载

从Github获取已打包的二进制文件,支持linux、mac、windows等操作系统,按操作系统环境下载即可。

Github发包路径:https://github.com/grafana/alloy/releases/tag/v1.4.3

环境说明

为了方便演示,本地以windows环境为主,因此下载使用alloy-windows-amd64.exe.zip解压包,实际windows与linux环境使用配置文件一样,可以直接将本地调试好的yml配置文件复制到linux环境下使用;

安装Alloy

Alloy需要安装在应用服务所在主机上才能进行抓取,下载alloy-windows-amd64.exe.zip解压包后,解压到任意目录(非中文),在alloy-windows-amd64.exe程序同目录下创建config.alloy文件(此为启动加载配置文件)

Alloy命令启动配置

// 公开或私用组件指标模式(默认"--stability.level=generally-available") 
alloy-windows-amd64.exe run config.alloy --stability.level=public-preview 

// 实验性模式 
alloy-windows-amd64.exe run config.alloy --stability.level=experimental 

// linux后台启动 
//nohup ./alloy-linux-amd64 run config.alloy > log.out 2>&1 &

需要注意的是,--stability.level表示当前启动稳定模式,experimental表示开放实验性功能(即一些未成熟的可用功能,生产不推荐)用于配置调试用,public-preview表示开放公共可预览特性等功能,generally-available表示已经成熟普遍可用的功能(默认,生产环境因用此配置);

更多详情配置参考官方:The run command | Grafana Alloy documentation

关于性能消耗

官方相关资源采集过程中性能消耗说明,参考:Estimate Grafana Alloy resource usage | Grafana Alloy documentation

Alloy基础配置

采集日志到Loki

// 收集日志
local.file_match "default" {
    path_targets = [{
        __path__    = "/data/log/info-*.log",
        service     = "systemName",
    }]
}

// 记录采集位置
loki.source.file "default" {
    targets               = local.file_match.default.targets
    forward_to            = [loki.write.default.receiver]
}

// 日志发送loki
loki.write "default" {
    endpoint {
        url = "http://127.0.0.1:3100/loki/api/v1/push"
    }
}

组件说明:

  • local.file_match :本地文件加载路径与K/V类型自定义标签配置,path_targets为数组,支持多个路径配置,__path__支持通配符用法,如:__path__ = "/data/log/info-*.log",加载以info为前缀的适配log文件
  • loki.source.file:从来源目标提取文件日志数据,并分发给目标组件
  • loki.write:推送日志到Loki服务目标

采集指标到Prometheus

Alloy本身提供了多种平台与服务的指标抓取、处理、分发能力,并通过prometheus进行远端收集与分析;如:kafka、oracle、mysq

### 回答1: 经过我的搜索,我找到了一篇使用Yolox对铝型材表面缺陷进行检测的相关文献。该文献的标题是《铝合金型材表面缺陷检测技术研究》(Research on Surface Defect Detection Technology of Aluminum Alloy Profiles),该文献是由北京工业大学的学者们共同撰写的。 在这篇文献中,作者们提出了一种基于Yolox深度学习算法的铝型材表面缺陷检测方法。该方法首先通过对铝型材表面进行图像采集和处理,将铝型材表面缺陷部位和正常部位分别提取出来。然后,利用Yolox深度学习算法对铝型材表面进行目标检测,最终实现对铝型材表面缺陷的精准检测。 该文献的研究结果表明,使用Yolox算法进行铝型材表面缺陷检测具有较高的检测精度和稳定性,可以有效提高铝型材表面缺陷检测的效率和准确性,具有一定的实用价值和推广应用前景。 ### 回答2: 目前,针对铝型材表面缺陷检测的研究,可以参考一篇名为《基于YoloX的铝型材表面缺陷检测方法研究》的文献。 该文献主要研究了如何利用YoloX算法来进行铝型材表面缺陷的自动化检测。YoloX是近年来非常流行的目标检测算法,具有高精度和实时性的特点,适用于各种复杂场景下的目标检测任务。 在该研究中,研究者首先收集了大量的铝型材表面图像样本,并使用图像处理技术对图像进行预处理,以提取出具有代表性的特征。然后,他们基于YoloX算法对铝型材表面进行目标检测,识别出缺陷区域。 为了提高检测的准确度,研究者还对YoloX算法进行了优化。他们通过调整YoloX的网络结构和超参数,提高了模型的性能。此外,他们还对模型进行了训练和优化,以提高其在铝型材表面缺陷检测任务中的表现。 实验结果表明,该方法在铝型材表面缺陷检测方面具有很高的准确率和鲁棒性。与传统的人工检测方法相比,该方法不仅能够大大提高检测效率,还能够降低运营成本和人力负担。 综上所述,使用YoloX进行铝型材表面缺陷检测已成为一种非常有效的方法。这种方法不仅检测准确率高,而且可以在实时性要求较高的生产环境中进行自动化检测,有着广泛的应用前景。 ### 回答3: 目前,在铝型材表面缺陷检测方面,已经有相关的研究使用了基于深度学习的目标检测算法Yolox。Yolox是一种高效的实时目标检测器,它结合了Yolo算法和EfficientDet算法的优点,具有更快的检测速度和更高的准确率。 其中,有一篇论文《基于Yolox的铝型材表面缺陷检测研究》,作者通过收集大量的铝型材表面缺陷图像数据集,并使用Yolox算法进行训练和测试。他们将铝型材表面缺陷分为凹陷、划痕、氧化等不同类型,并在数据集上进行了标注。然后,他们使用Yolox算法对标注的数据集进行训练,并在测试集上进行了验证。 研究结果表明,Yolox算法在铝型材表面缺陷检测方面取得了很好的效果。通过使用Yolox进行目标检测,能够准确地检测出铝型材表面的缺陷,并且具有较高的检测速度。此外,Yolox还具有较强的泛化能力,能够适应不同类型和尺寸的铝型材表面缺陷。 这篇论文的研究为铝型材表面缺陷的自动检测提供了一种新的解决方案,为实际工程应用提供了重要参考。研究者还提出了一些改进的方向,如进一步优化算法的准确率和检测速度,应用于实际生产中的在线检测等。这表明Yolox算法在铝型材表面缺陷检测领域有着广阔的发展前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值