以下为哥德巴赫猜想完整代码:
def is_prime(num):
cnt=0
for i in range(2,num):
if num%i==0:
cnt+=1
[1,num].append(i)
if cnt==0:
return num
def goldbach(num5):#goldbach conjecture:for {n∈N+|n∈(5,∞)},always have n=x+y+z(x,y,z are prime)
lst2=[]
lst=[is_prime(i) for i in range(2,num5) if is_prime(i)!=None]
for k in range(len(lst)):
conum=num5-lst[k]
for n in range(len(lst)):
if lst2!=[]:
break
#一旦有一种三素数的组合方式就结束循环,因为可能这个数num5有多种素数组合的方式,我们只要一种就够了
for m in range(len(lst)):
if conum==lst[n]+lst[m]:
lst2=[lst[n],lst[m],lst[k]]
return lst2
lst3=[i for i in range(6,10)]#哥德巴赫证明范围
print({lst3[i]:list(map(goldbach,lst3))[i] for i in range(len(lst3))})
#运行结果:{6:[2,2,2],7:[2,3,2],8:[3,3,2],9:[2,5,2]}
整个代码分三部分,第一部分判断素数的子程序,第二部分是哥德巴赫猜想在指定区间的实现的子程序,最后是主程序。
其中goldbach()中有一个简单的思想方法,就是简化思想-把由三个素数组成的加和通过循环分解成两个(if conum== lst[n]+lst[m]),这样判断就更加的容易了
另外,goldbach()子程序的第二行使用到了列表生成式,目的就是让代码更加简洁,其实他的真面目是:
lst=[]
for i in range(2,num5):
if is_prime(i)!=None:
lst.append(is_prime(i))
回到的哥德巴赫猜想实现程序,我在goldbach()中使用了三层for循环。虽然很费系统资源,但由于有人已经使用while循环证明了该猜想,我再用一次while就显得没必要。
最后一行打印字典生成式中使用到了map方法,即将goldbach()这个一次只能返回一个数的素数组合的子程序多次运行,直到lst3列表中所有元素都经过该子程序,并返回一个对象。举个例子吧:
def a(num):
return num*2
lst=[1,2,3,4]
print(list(map(a,lst)))
#运行效果:
#打印列表:[2,4,6,8]
最后别忘了map返回的不是列表,所以如果想让他以列表呈现出来还要多加一步:list(...)
注:列表生成式有很多鬼畜的玩法,各式各样的。对于初学的朋友别忘了去学一下列表生成式,以后对写,简化,格式化代码很有帮助!
附:角谷定理给定区间内证明其正确性python
# 角谷定理证明
def func(x):
if x % 2 != 0:
return x*3+1
else:
return round(x/2)
result3 = map(func, [i for i in range(2, 20)]) # 将func函数功能应用到lst中
for j in range(17): # 迭代最少次数
result3 = map(func, list(result3))
lst_Kakutani = list(result3)
print(lst_Kakutani)
for m in lst_Kakutani:
if m != 1 and m != 4 and m != 2:
print("迭代次数不够多或猜想不成立")
break
#运行结果:[2,2,4,4,4,2,1,2,1,4,1,1,4,4,2,1,4,4]
角谷定理提出:给定任意自然数,若是偶数就除以二,若是奇数就乘三加一,一直这么迭代下去,最后该自然数会在1->2->4->1....这几个数中循环,也就是说如果该程序运行结果中显示的列表里面的数不是1,2就是4。若出现了其他数,一般说明可能迭代次数不够,第二可能就是定理错了。当然在该程序中,如果出现其他数,终端序会显示:“迭代次数不够多或猜想不成立”。所以就不用费力地观察了
该程序如何体现角谷定理的:在这个程序中,func()实现的是一个自然数的一次迭代,我们还需要多个自然数的一次迭代(line8-9),再到多个自然数的多次迭代(line11-12),且迭代次数有穷。
java 版角谷定理证明
package advance;
public class Kakutani {
private int number;
public static int cnt;
public void setNumber(int number) {
this.number = number;
}
public int iter1(int r) {
if (r % 2 == 0) {
return r / 2;
} else {
return r * 3 + 1;
}
}
public int iter_n() {
int result = this.iter1(this.number);//一次迭代的结果
while (result != 1 && result != 2 && result != 4) {//有问题的部分:若角谷定理为假,则其是死循环
result = this.iter1(result);
cnt += 1;
}
return result;
}
public static void main(String[] args) {
Kakutani num = new Kakutani();
int randint = (int) (Math.random() * 100);
num.setNumber(randint);// random number range=[0,100)
int result = num.iter_n();//迭代完成的结果
System.out.println("kakutani_func^" + cnt + "(" + randint + ") = " + result);
if (result == 4 || result == 2 || result == 1) {
System.out.print("kakutani thereom has been proofed!");
} else {
System.out.print("kakutani thereom is incorrect!");
}
}
}