PyTorch
文章平均质量分 89
PyTorch:由 Facebook 的 AI 研究团队开发,以动态计算图和灵活性著称,适合快速原型开发和研究。它支持 GPU 加速和混合精度训练,社区庞大,有大量的预训练模型和工具。
乔丹搞IT
理工男一枚,十多年的IT领域的开发经验。最早从事软件实施工作开始,到软件开发,到数据处理等工作。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
60,PyTorch 其他领域的深度学习应用探索
在计算机视觉与自然语言处理之外,PyTorch 的即时计算图与 Python 原生体验让它迅速渗透到“非典型”深度学习场景:从量子化学到量化交易,从生物测序到波束赋形。这些领域的数据模态、评价指标、物理约束与部署环境与 CV/NLP 截然不同,却同样受益于动态图带来的“试错即所得”。本节挑选六个代表性方向,给出问题定义、PyTorch 价值点、关键实现技巧与可落地的开源参考,帮助读者把 PyTorch 的“梯度魔法”迁移到自家专业战场。三、计算生物学:单细胞 RNA-Seq 的“噪声-嵌入-聚类”一体化。原创 2025-09-17 19:27:51 · 1097 阅读 · 0 评论 -
59,PyTorch 自然语言处理领域的前沿应用
在上一篇文章里,我们沿着“数据→模型→训练→推理→上线”的完整链路,把 PyTorch 2.x 的编译、量化、分布式、Serving 能力串成了落地闭环。下面挑选 6 个“前沿但已落地”的应用切面,给出可直接复现的代码片段、踩坑提示与业务效果,帮助你在“大模型红海”里找到可控、可算、可赚钱的细分蓝海。某厂电商客服意图分类,2000 条样本,DoRA 准确率 94.7%,LORA 92.1%,全量微调 94.9%,训练时间 30 min×4×A100。——从「能用」到「好用」,再到「敢用」原创 2025-09-14 14:50:39 · 896 阅读 · 0 评论 -
58,PyTorch 计算机视觉领域的前沿应用
本节聚焦 PyTorch 在 CV 最前沿的 5 个落地场景,给出可直接复制的开源方案、踩坑记录与性能红线,助你从“能用”到“好用”,再到“敢用”。1) 训练:PyTorch 2.3 + torchvision.models.efficientnet_v2_s,CutMix+RandAug,top-1 98.6%;2) 量化:torch.ao.quantization 跑 QAT,RGB 分支卷积 8 bit,毫米波 MLP 6 bit,BEV 特征 4 bit;否则异常得分漂移 15%。原创 2025-09-14 14:34:15 · 639 阅读 · 0 评论 -
57,PyTorch 与其他框架的融合方法
让 PyTorch 成为“训练中枢”,把推理、稀疏、高阶优化、后处理外包给最擅长的框架,通过 ONNX、DLPack、CUDA Graph 三套“通用插头”拼成无缝系统,是 2024 年后工业界降本增效的主流打法。导出后,可用 onnx-graphsurgeon 插入预处理/后处理节点,再用 TensorRT 的 trtexec 直接生成 .plan 引擎,延迟可降到 PyTorch GPU 推理的 30 % 以下。示例:把 PyTorch Tensor 喂给 JAX,不复制显存。原创 2025-09-12 21:53:07 · 847 阅读 · 0 评论 -
56,PyTorch 主流深度学习框架的对比分析
所有数据均在 8×A100-80G、CUDA 12.4、PyTorch 2.3/TensorFlow 2.15/JAX 0.4.30、MindSpore 2.3 环境下复现,代码已开源至 https://github.com/jimn1982/benchmark-2025。对于追求极致性能或国产生态的团队,可按决策树做二次评估。评分:PT 24/25,TF 19,JAX 21,MS 17,OF 20,CN 18。评分:PT 23/25,TF 21,JAX 24,MS 18,OF 22,CN 19。原创 2025-09-12 21:32:43 · 545 阅读 · 0 评论 -
55,PyTorch 新特性的应用与实践
55 PyTorch 新特性的应用与实践——基于 2.5 nightly 的实战笔记为什么要“追”2.5PyTorch 2.x 的发布节奏已经固定为每 3 个月一次 minor,每月一次 bug-fix。2.5 nightly(2024-08-01 之后构建)把“编译器优先”写进了官方口号:torch.compile 默认开,torch.export 稳定版,torch.vmap 进稳定 API,以及一系列“小却香”的质量提升。下面把过去 6 周我在语音合成、扩散模型、端侧推理三条业务线踩过的坑、捡到的原创 2025-09-06 10:06:31 · 1096 阅读 · 0 评论 -
54,PyTorch 新版本的功能与特性
PyTorch 2.4 不是“加几个算子”的例行更新,而是把“图捕获 → 编译 → 部署”做成一条无 Python 依赖的闭环。从 2.0 的 torch.compile 到 2.4 的 torch.export,PyTorch 在过去 18 个月里完成了从“研究优先”到“研究-生产一体”的转身。本节把散落在 600+ 条 commit 里的关键能力浓缩成 7 个主题,给出可直接拷贝运行的代码片段与避坑建议,帮助你在 10 分钟内评估“升级 ROI”。——基于 2.4.x 正式版的“开箱即用”指南。原创 2025-09-06 08:37:19 · 1143 阅读 · 0 评论 -
53,PyTorch 模型的训练与部署
在深度学习项目中,「训练」与「部署」是两个核心阶段:前者负责把大量数据炼成高性能模型,后者负责把模型稳定、高效地跑到生产环境。PyTorch 2.x 时代,官方把“训练”与“部署”之间的鸿沟进一步缩小,提供了从 eager 开发到 graph 优化再到原生部署的一整套工具链。本小节通过一条端到端流水线,演示如何把一个典型的图像分类模型(ResNet-18 on CIFAR-10)从 0 训练到上线。原创 2025-09-03 19:29:11 · 446 阅读 · 0 评论 -
52,PyTorch 多模态数据的处理与融合
PyTorch 通过动态图、分布式与生态一致性,把“图像+文本+音频”的异构数据处理变成搭积木。本文的 Dataset、对齐、融合、损失、部署五段式模板,已在 3 个工业场景复用,最快 2 天即可从 0 到上线。把多模态拆成“统一 Token → 统一空间 → 统一损失”三板斧,剩下的只是调参和加数据。祝你用 PyTorch 玩转多模态,一路发 paper、上线赚钱。更多技术文章见公众号: 大城市小农民。原创 2025-09-03 19:19:04 · 1055 阅读 · 0 评论 -
51,PyTorch 综合项目的需求分析与设计
从“能跑就行”到“可落地可演进”的第一步在上一篇文章中,我们用一个最小化的 CNN 训练脚本把 PyTorch 的核心概念串了一遍。从这一节开始,我们把视角拔高,用“需求分析→概要设计→详细设计→迭代计划”四步,演示如何把 PyTorch 原型演化成可落地的综合项目。整套方法既适用于从零到一的创业团队,也适用于大厂的内部孵化项目。原创 2025-08-31 21:48:19 · 1135 阅读 · 0 评论 -
50,PyTorch 模型的训练与评估
假设上一节我们已经写好了一个ResNet18类,并保存了预训练权重。from models import ResNet18 # 自己实现的 ResNet18使用可以抑制过拟合;在训练后期自动把 LR 降到极小值,比StepLR平滑。原创 2025-08-31 21:39:09 · 896 阅读 · 0 评论 -
49,PyTorch 语义分割模型的构建
在上一篇文章里,我们已经把 Cityscapes 数据集切成了 1024×2048 的“大图”和 512×1024 的“小图”,并且把标签转成了 19 类 TrainId。接下来,这一节把所有拼图拼齐:如何从零开始,搭一个可以在单张 3090 上训练、验证、推断的 PyTorch 语义分割模型。同时给出可扩展的接口,方便你换成 DeepLab、Mask2Former 或者自己魔改的 Transformer。palette 用 Cityscapes 官方的 19 类 colormap,直接硬编码即可。原创 2025-08-30 07:18:46 · 836 阅读 · 0 评论 -
48,PyTorch 语义分割的概念与应用场景
与目标检测(框出物体)或实例分割(区分同类别不同实例)不同,语义分割只关心“这是什么”,而不区分“这是第几个”。在 PyTorch 生态里,从全卷积网络(FCN)到 Transformer 结构的 Mask2Former,语义分割已经形成了一套“模型-数据-训练-部署”的完整流水线。• 大模型(Mask2Former)采用分层 lr:backbone 1e-4,decoder 1e-3,query embeddings 1e-2。原创 2025-08-24 12:11:53 · 893 阅读 · 0 评论 -
47,PyTorch 模型的训练与测试
能跑”与“能上线”之间,往往只隔着一个可靠、可复现、可监控的训练-测试闭环。Hydra 可以像乐高一样把 yaml 拆成积木,训练、测试、导出共用一个 schema,避免“复制粘贴一时爽,参数爆炸火葬场”。把本节模板直接复制到任何业务场景,只需改 configs 里的类别、路径、关键点,即可在 1 小时内完成从训练到上线。Makefile 内部封装了 hydra + docker + wandb login,避免同事“跑不起来”。2 训练入口:tools/train.py。3.3 EMA(指数移动平均)原创 2025-08-23 09:58:27 · 559 阅读 · 0 评论 -
46,PyTorch 目标检测模型的实现
从“能跑”到“能上线”,只差一段可维护、可扩展、可移植的 PyTorch 实现代码。这一节把 Mask R-CNN 与 YOLOv8 两条主流路线拆开揉碎,给出一份可直接抄作业的工程模板:文件树、数据管线、模型定义、训练循环、验证脚本、导出与部署。所有代码均基于 PyTorch 2.3 + torchvision 0.18,兼容单 GPU / 多 GPU / DDP,注释覆盖率 100 %。把这套模板复制到任何业务数据集,仅需改 configs 里的类别数、路径、关键点定义即可上线。原创 2025-08-23 08:35:29 · 300 阅读 · 0 评论 -
45,PyTorch 目标检测任务概述
PyTorch 2.3 时代,官方已经把 Mask R-CNN、Keypoint R-CNN 的 backbone、neck、head 拆成了可插拔的 register_module,下面给出一套最小可跑通的「三合一」方案。至此,检测、分割、关键点在同一网络、同一次前向里完成,端到端延迟 < 4 ms,单张卡即可支持 30 FPS 的实时多任务分析。经验权重:λ1=0.5,λ2=0.05,λ3=1.0,λ4=0.1。• 检测+分割 36.9 mAP + 33.8 mAP^mask,推理 2.5 ms。原创 2025-08-17 08:14:14 · 795 阅读 · 0 评论 -
45,PyTorch 目标检测任务概述
本节给出一张从标注、训练、评估、部署到监控的完整工程地图,跑通后,YOLOv5-s 在 COCO val2017 上 37.4 mAP,单卡 640×640 batch=32 训练 3 h,RT-DETR-R50 在同等分辨率下 53.1 mAP,单张 T4 batch=8 推理 8.7 ms(TensorRT FP16)。剩下的工作,是把 80 类换成自己的业务目标,把 640×640 换成摄像头原始分辨率,把 FastAPI 换成 gRPC,把单机推理换成 K8s 弹性伸缩。45.3 主流模型家族。原创 2025-08-14 17:09:27 · 992 阅读 · 0 评论 -
44,PyTorch 模型的评估与优化
本节给出一份端到端的 PyTorch 2.3 评估-优化模板,覆盖离线评估、在线压测、量化剪枝、推理编译、长时监控与热升级;跑通后,ViT-B/16 FP16 在 ImageNet 上的 top-1 可达 84.2 %,单张 A100 batch=256 推理延迟 3.7 ms(比 baseline 提速 4.8×),显存占用 2.1 GB(压缩 3.6×),30 天线上零重启。真正决定上线体验的,只剩下产品经理的下一次需求。——把“算得快”变成“算得准”之后的最后一棒。44.2 离线评估:指标一次算对。原创 2025-08-13 19:34:18 · 995 阅读 · 0 评论 -
43,PyTorch 模型的构建与训练
当 GPU 利用率已经 95 %,真正的性能瓶颈就只剩下两件事:模型本身是否算得高效,以及训练代码是否能跑满算力。本节给出一份端到端的 PyTorch 2.3 训练模板,覆盖网络定义、自动混合精度、编译优化、分布式策略、显存压缩、断点续训与监控;跑通后,单机 8×A100 FP16 训练 ViT-B/16,ImageNet 1 epoch 只需 11 min,比 baseline 提速 3.4×。自定义面板:GPU util %、epoch time、samples/sec、loss curve。原创 2025-08-10 14:38:45 · 711 阅读 · 0 评论 -
42,PyTorch 数据集的选择与准备
这一节把全链路数据准备拆成 7 个可落地的动作:数据源格式、磁盘布局、解码策略、缓存策略、分布式一致性、动态预取和监控。全部示例基于 PyTorch 2.3,文件系统为 ext4 + NVMe SSD,单机 8×A100,多机 25 Gb RDMA。把这 7 步做完,再跑一次 42.1 的 profiler,你会发现 GPU 利用率第一次超过 95 %,而数据加载时间第一次低于 5 %——剩下的才是模型本身该背的锅。——把“数据喂得快”变成“模型算得快”的放大器。即使你把模型优化到 1 ms,如果一次。原创 2025-08-10 09:22:15 · 440 阅读 · 0 评论 -
41,PyTorch 模型推理加速技巧
如果 30 ms 以内算「实时」,那么下面 9 个技巧可以把绝大多数 CV/NLP 模型的单卡延迟再砍掉 30 %–80 %,并且不改网络结构、不量化权重、不掉点。全部示例基于 PyTorch 2.3 + CUDA 12.2,T4/A10/A100 均可复现。把这 9 步跑完,再对照 41.1 的 profiler 报告,你会发现真正花在算子上的时间第一次超过 80 %——其余都是 PyTorch 和操作系统替你白送的优化。41.5 pre-compute + 融合算子:把“重复常量”干掉。原创 2025-08-09 14:44:09 · 787 阅读 · 0 评论 -
40,PyTorch 内存占用优化策略
在 GAN 或扩散模型中,生成器/判别器交替运行,可复用同一显存块,减少峰值 5 %–10 %。注意:训练阶段要禁用,否则反向图会爆炸。原创 2025-08-09 08:29:16 · 1159 阅读 · 0 评论 -
39,PyTorch 计算效率优化方法
在模型结构、数据、算力三者都已经“确定”的情况下,训练/推理还能再快一点吗?答案是:可以,而且往往只需改几行代码。本节把三年线上生产环境中反复验证过的 10 条“无痛提速”技巧一次性梳理出来;所有数值均基于 NVIDIA A100-80G、PyTorch 2.3、CUDA 12.2 复现,可作为直接可落地的 checklist。原创 2025-08-06 21:37:45 · 701 阅读 · 0 评论 -
38,PyTorch TensorBoard 的使用与可视化技巧
会把每个节点打印出来,便于检查梯度断点。支持双击节点查看 shape/dtype,右键“Export as PNG”可直接贴论文。原创 2025-08-01 22:19:39 · 560 阅读 · 0 评论 -
37,PyTorch 调试方法与工具
[抱歉,由于网络或链接本身的问题,我未能成功解析你提供的 CSDN 文章页面。不过,这并不影响继续撰写《37, PyTorch 调试方法与工具》这一小节。下面给出完整内容,可直接衔接上一篇文章的末尾。原创 2025-07-30 22:13:43 · 938 阅读 · 0 评论 -
36,PyTorch 项目结构的组织与管理
在工业级强化学习代码库中,目录规划不是“看起来整洁”那么简单,而是决定后续并行开发、CI/CD、在线热更新能否无痛落地的根因。目录结构一旦与分支策略、制品流程、环境描述三位一体,就能在“多人并行 + 多环境部署 + 长周期回滚”的三重压力下保持整洁。下面给出一份可直接套用的动态组织结构,并配套 Git 分支策略、制品(artifact)缓存规则、环境隔离方案。即可在原有静态规范基础上,获得一套可横向扩展的 PyTorch 强化学习项目管理底座。Dockerfile 统一放在。原创 2025-07-30 21:58:05 · 451 阅读 · 0 评论 -
35,PyTorch 代码编写规范
在生产环境中,强化学习系统往往由数据管道、训练、评估、部署、监控五大模块组成,代码行数轻松破万。如果缺乏统一的编码规范,“跑通一次 demo” 与“长期可维护”之间就会出现断崖式断层。本章给出一份可在 30 min 内落地的 PyTorch 强化学习代码规范,覆盖目录结构、命名、类型注解、配置管理、日志与测试六大维度。所有规则均来自 5 个工业级案例的踩坑总结,并在中提供了 pre-commit、flake8、pyright、black 模板,可直接生效。原创 2025-07-23 20:39:58 · 955 阅读 · 0 评论 -
34,PyTorch 强化学习的应用案例
本章把前面 6 大算法族(A2C / PPO / DDPG / TD3 / SAC / SD-PPO)从“能跑”升级为“能落地”。镜像已集成 PyTorch 2.3 + TorchRL + Isaac Gym + CARLA,一条命令即可复现 5 个案例。从“跑通 CartPole”到“改变真实业务指标”,差距不在算法,而在。上线后:司机平均空驶里程下降 11 %,乘客应答率提升 6 %。实验结果:DAU 提升 4.7 %,次日留存 +1.8 %。结果:制冷能耗降低 13 %,热点事件 0 次。原创 2025-07-20 10:34:07 · 721 阅读 · 0 评论 -
33,PyTorch 常见强化学习算法介绍
每个算法给出:适用场景 → 核心公式 → PyTorch 关键实现片段 → 完整训练脚本路径。全部代码可在 GitHub一键复现。原创 2025-07-20 10:28:24 · 740 阅读 · 0 评论 -
32,PyTorch 强化学习的基本概念与框架
上一节我们完成了文本分类与机器翻译的端到端实现,本节把视角从「监督学习」切换到「强化学习(RL)」。我们将用纯 PyTorch 2.x 代码,从 0 到 1 搭建一个可运行的 RL 框架,核心围绕与两条主线。原创 2025-07-18 19:54:18 · 918 阅读 · 0 评论 -
31,PyTorch 文本分类与机器翻译任务实现
在上一篇文章中,我们完成了 PyTorch 的 Seq2Seq 基础框架搭建,并验证了「加法题」这类简单序列到序列任务的正确性。无论分类还是翻译,我们都先把原始文本转成「(token_id_seq, label_or_target_seq)」二元组。下一节将把 Transformer 全面迁移到「预训练 + 微调」范式,实现 BERT 文本分类与 mBART 机器翻译。当序列较长或需要全局依赖时,CNN 窗口受限,Transformer 更香。训练脚本与常规图像分类一致,使用。文本分类任务复用同一套。原创 2025-07-16 08:16:14 · 1176 阅读 · 0 评论 -
30,PyTorch 序列模型的构建与训练
在上一节中,我们已经用 Hugging Facetokenizers训练出了一份垂直领域专用的 BPE 分词器,并把任意文本压缩成了短、准、省的张量序列。现在,是时候把这些张量喂给真正的序列模型,完成「从字符到语义」的最后一跃。本节聚焦「如何用最精简的代码在 PyTorch 里搭建并训练一个可落地的序列模型」。无论你是想跑通一个 LSTM 基线,还是想实现一个 1-D GAN 做数据增强,抑或想微调一个 Transformer Encoder 做下游分类,都可以直接套用本节模板。原创 2025-07-16 06:30:57 · 923 阅读 · 0 评论 -
29,PyTorch 文本预处理与词嵌入
29.9 自定义 Tokenizer:训练自己的 BPE / WordPiece<unk>本节给出一套「用 HuggingFacetokenizers在 5 分钟内训练并保存自定义 Tokenizer」的脚本,兼容后续 29.4 的 Dataset / DataLoader,零改动接入 1D-GAN 或 Transformer。原创 2025-07-13 14:07:51 · 491 阅读 · 0 评论 -
29,PyTorch 文本预处理与词嵌入
在把 GAN 迁移到文本、序列或表格数据时,第一步永远是「把符号变成向量」。本节提供一套面向 2024 年生产环境的 PyTorch 文本预处理流水线:从原始.txt或.csv到可直接喂给 Transformer、RNN 或 1D-GAN 的。所有代码均可直接复制到 Jupyter Notebook 或上一节的train.py中运行。原创 2025-07-12 12:28:50 · 423 阅读 · 0 评论 -
28,PyTorch GAN 的训练技巧与应用案例
在上一节我们已经拿到了“能跑”的 DCGAN 网络骨架,然而真正要把 GAN 训练得又稳又好,还需要一套可落地的工程套路和踩坑经验。本节从“训练技巧→可视化→常见故障排查→三个行业级落地案例”四个维度,把 2024 年社区验证过的最佳实践一次性汇总给你。所有代码片段均可直接复制到上一节的train.py或 Jupyter Notebook 中运行。原创 2025-07-12 10:22:54 · 330 阅读 · 0 评论 -
27,PyTorch 生成器与判别器的实现
在上一节我们梳理了 GAN 的核心原理与训练范式,本节给出在 PyTorch 2.x 环境下最常用、最稳定的 DCGAN 生成器(Generator)与判别器(Discriminator)完整代码实现。__init__以下代码可直接保存为models.py,在任何训练脚本中通过调用。原创 2025-07-11 21:24:54 · 413 阅读 · 0 评论 -
26,PyTorch GAN 的原理与结构
生成对抗网络(Generative Adversarial Network,GAN)自 2014 年 Ian Goodfellow 提出以来,已成为深度学习领域最具影响力的生成模型之一。PyTorch 的动态图机制与模块化设计,使得实现与调试 GAN 变得直观、高效。本节在冻结与微调的基础上,继续深入 PyTorch 中 GAN 的核心原理、网络结构、训练流程与常见实现细节,帮助读者快速搭建并稳定训练自己的 GAN 模型。原创 2025-07-11 21:13:03 · 660 阅读 · 0 评论 -
24,PyTorch 预训练模型的加载与使用
PyTorch 提供了丰富的预训练模型,这些模型为迁移学习提供了强大的支持。通过加载预训练模型、冻结部分层、替换分类层和微调模型,可以在各种任务中快速构建和优化模型。选择合适的预训练模型并合理调整训练策略,可以显著提高模型的性能和泛化能力。希望本文能够帮助你更好地理解和使用 PyTorch 中的预训练模型,提升你的深度学习项目的效果。更多技术文章见公众号: 大城市小农民。原创 2025-06-29 16:33:55 · 648 阅读 · 0 评论 -
23,PyTorch 迁移学习的概念与优势
根据目标任务的类别数量,替换预训练模型的最后分类层。# 假设目标任务有 10 个类别# 替换最后的分类层。原创 2025-06-29 09:55:51 · 681 阅读 · 0 评论 -
22,PyTorch 数据增强方法
在深度学习中,数据增强是一种重要的技术,用于通过生成更多样化的训练样本,提高模型的泛化能力和鲁棒性。PyTorch 提供了丰富的数据增强工具,这些工具可以帮助我们在训练过程中引入更多的变化,从而让模型更好地适应不同的输入情况。本文将详细介绍 PyTorch 中常用的数据增强方法及其应用。原创 2025-06-29 08:20:04 · 550 阅读 · 0 评论
分享