Spark案例分析——不同区域热点商品分析

8 篇文章 0 订阅

数据来源有三张表:

user_visit_action,描述用户点击信息,存储在hive中

模拟数据如下:有效信息date,点击时间,city_id城市,order_product_id用户点击商品的id

date,user_id,session_id,page_id,action,city_id,search_keywords,order_product_id
2018/5/1,,,,,010,,1011
2018/5/1,,,,,010,,1011
2018/5/1,,,,,010,,1011
2018/5/1,,,,,010,,1011
2018/5/1,,,,,011,,1011
2018/5/1,,,,,011,,1011
2018/5/2,,,,,011,,
2018/5/2,,,,,011,,null
2018/5/2,,,,,011,,1022
2018/5/2,,,,,011,,
2018/5/2,,,,,010,,1033
2018/5/2,,,,,010,,1034
2018/5/2,,,,,012,,1035

city_info,描述城市信息,存储在MySQL中

数据描述:城市id,城市名称,所属区域

city_id,city_name,area
010,beijing,huazhong
011,tianjin,huazhong
012,hebei,huazhong
020,shanghai,huanan
021,nanjing,huanan
022,shandong,huanan
030,haerbin,dongbei
031,jilin,dongbei
032,shenyang,dongbei

roducet_info,描述商品信息,存储在hive中

数据描述,商品id,商品名称,扩展信息

product_id,product_name,extends_info
1011,aa,{"product_status":0,"price":100}
1022,bb,{"product_status":1,"price":101}
1033,cc,{"product_status":0,"price":102}
1034,dd,{"product_status":1,"price":103}
1035,ee,{"product_status":0,"price":104}
1036,ff,{"product_status":1,"price":105}
1037,gg,{"product_status":0,"price":106}
1038,hh,{"product_status":0,"price":107}
1039,ii,{"product_status":1,"price":108}
1040,jj,{"product_status":0,"price":109}
1041,kk,{"product_status":1,"price":110}
1042,ll,{"product_status":0,"price":111}

案例需求:求出不同区域的热点商品,求top3

额外要求:增加字段描述商品对应所在区域的城市名称,增加商品来源(product_status)

主体代码实现

package day6.test1.day9

import java.util.Properties

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Row, SaveMode}
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.{SparkConf, SparkContext}

object HotGoodsMT{




  def main(args: Array[String]): Unit = {
    /**
      * 第一步 创建程序入口
      */
    val conf = new SparkConf().setMaster("local")
      .setAppName(s"${this.getClass.getSimpleName}")
    val sc = new SparkContext(conf)
    val sqlContext = new HiveContext(sc)
    //自定义的聚合函数
//    sqlContext.udf.register("group_dinstict_func",GroupDinstictUDAF)
    sqlContext.udf.register("get_product_status",(str:String) =>{//json
    var status=0;
      for( s <- str.split(",")){
        if(s.contains("product_status")){
          status=s.split(":")(1).toInt
        }
      }
      if (status == 0)"自营" else "第三方"
    })

    /**
      * 第二步 接收外面传进来的参数
      *   起始时间 startTime
      *   结束时间 endTime
      */
    val Array(startTime,endTime)=Array("2018/5/1","2018/5/4")//args
    /**
      * 第三步:
      *      根据时间去Hive表里面获取用户行为的数据
      *      注册成为临时信息表cityid2Action
      */
    val cityid2Actiontable = "cityid2Action"
    val cityid2Action
    = getActionDataByRange(startTime,endTime,sqlContext,cityid2Actiontable)


    /**
      * 【接下来我做的这些事,不一定是最好的选择】,大家可以按照自己思路做。
      * 第四步:
      *       获取城市信息表(mysql)
      *       注册为临时信息表cityid2City
      */
    val cityid2Citytable = "cityid2City"
    val mysql_tablename = "city_info"
    val cityid2City = getCityInfo(sqlContext,cityid2Citytable,mysql_tablename)

    /**
      * 第五步:
      * 第三步和第四步的表进行 join (cityid)  -> table
      * cityid2Action
      * cityid2City
      */

    val area2ActionTable = "areaaction"
    generateTempTable(sqlContext,cityid2Actiontable,cityid2Citytable,area2ActionTable)
    /**
      * 第六步:
      * 统计商品点击的次数
      * 增加需求,将商品在不同区域的城市合并,添加为新字段
      */
    //注册自定义的函数
    sqlContext.udf.register("combaincity",MyUDAT_cityCombain)
    val area2citynameactiontable = "areacombaincityname"
    productClickCountByArea(sqlContext,area2citynameactiontable)
    /**
      * 第七步:
      * 分组求TopN
      * 新增分级字段
      */
    val topNtable = "topN"
    topN(sqlContext,topNtable)
    val leveltable = "topNlevel"
    levelTopN(sqlContext,leveltable)

    /**
      * 第八步:
      * 上一步的结果 跟 商品信息表进行join
      */
        genarateFullTable(sqlContext)

    /**
      * 第九步:
      * 把最后的结果写入mysql数据库
      */
//    writeresult(sqlContext)
  }
  def getActionDataByRange(startTime: String, endTime: String
                           , sqlContext: HiveContext,table_name:String) = {
    val sql =
      s"""
        select
            city_id,order_product_id
        from
            myhive.user_visit_action
        where
            order_product_id !=''
        and
            order_product_id != 'null'
        and
            order_product_id != 'NULL'
        and
            datee >= '${startTime}'
        and
            datee <= '${endTime}'
      """
    val df = sqlContext.sql(sql)
    df.createOrReplaceTempView(table_name)
  }
  //---------------------
  def getCityInfo(sqlContext: HiveContext,tablename:String,mysqltable:String) = {
    val url = "jdbc:mysql://hadoop02:3306/test"
    val df = sqlContext.read.format("jdbc")
      .option("url", url)
      .option("dbtable", mysqltable)
      .option("user", "root")
      .option("password", "root")
      .load()
    df.createOrReplaceTempView(tablename)
  }
  def generateTempTable(sqlContext: HiveContext, cityid2Actiontable: String
                        , cityid2Citytable: String,area2action:String): Unit = {
    val sql =
      s"""
        select
            b.city_id,b.order_product_id,a.area,a.city_name
        from cityid2City a
         left join
            cityid2Action b
         on
          a.city_id = b.city_id

      """
    val df = sqlContext.sql(sql)
    df.createOrReplaceTempView(area2action)

  }

  def productClickCountByArea(sqlContext: HiveContext
                              , area2citynameactiontable: String): Unit = {
    val sql=
      """
        select area,order_product_id,count(*)as clicknum,combaincity(city_name)as city_name
        from areaaction
        group by area,order_product_id
      """
    val df = sqlContext.sql(sql)
    df.createOrReplaceTempView(area2citynameactiontable)
  }

  def topN(sqlContext: HiveContext,topNtable:String): Unit = {
    val sql =
      """
         select area,order_product_id,city_name,clicknum
         from
          (select 
	  area,order_product_id,city_name,clicknum,
          row_number() over (partition by area sort by clicknum desc) as rank
          from 
	  areacombaincityname)a
         where a.rank <= 3
      """
    val df = sqlContext.sql(sql)
    df.createOrReplaceTempView(topNtable)
  }
  def levelTopN(sqlContext: HiveContext, leveltable: String): Unit = {
    val sql=
      """
        select area,
        case when area="huazhong" then "A"
             when area="huanan"then "B"
             when area="dongbei"then "C"
             else "D"
         end as level,order_product_id,city_name,clicknum
         from topN
      """
    val df = sqlContext.sql(sql)
    df.createOrReplaceTempView(leveltable)
  }
  def genarateFullTable(sqlContext: HiveContext): Unit = {
    val sql =
      """
         select area,level,order_product_id,city_name
         ,clicknum,product_name,get_product_status(extends_info)
         from topNlevel a,myhive.product_info b
         where a.order_product_id = b.product_id

      """
    val df = sqlContext.sql(sql)
    df.createOrReplaceTempView("result")
    val url = "jdbc:mysql://hadoop02:3306/test"
    val table = "resultFull"
    val properties = new Properties()
    properties.put("user","root")
    properties.put("password","root")
    df.write.mode(SaveMode.Overwrite).jdbc(url,table,properties)
  }

}

求区域商品对应的城市信息需要使用自定义udaf 函数

package day6.test1.day9

import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, StringType, StructField, StructType}

object MyUDAT_cityCombain extends UserDefinedAggregateFunction{
  override def inputSchema: StructType = StructType(
    StructField("city_info",StringType,true)::Nil
  )

  override def bufferSchema: StructType = StructType(
    StructField("city_info",StringType,true)::Nil
  )

  override def dataType: DataType = StringType

  override def deterministic: Boolean = true

  override def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer.update(0,"")
  }

  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    var  last_str = buffer.getString(0)
    val current_str = input.getString(0)
    if(!last_str.contains(current_str)){
      if (last_str.equals("")){
        last_str = current_str
      }else{
        last_str += "," + current_str
      }
    }
    buffer.update(0,last_str)
  }

  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    var b1 = buffer1.getString(0)
    val b2 = buffer2.getString(0)
    for(s <- b2.split(",")){
      if (!b1.contains(s)){
        if (b1.equals("")){
          b1 = s
        }else{
          b1 += "," + s
        }
      }
    }
    buffer1.update(0,b1)
  }

  override def evaluate(buffer: Row): Any = {
    buffer.getString(0)
  }
}

-----------------------------------------------------------------------------------------------------------

程序运行,提前将表存储到对应的数据库中

将程序打包,详细图解过程如下:







-------------------------------------------------------

将打包好的jar包上传到spark集群,使用命令运行

 spark-submit --class day6.test1.day9.HotGoodsMT --master local[4] meituan.jar 

最终结果保存在MySQL中,结果如下:





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值