5. 求cosx计算公式

该程序基于泰勒级数展开公式,采用Python编写,用于计算弧度制下x的余弦值的近似值。用户输入弧度x和项数n,程序将计算并输出cosx的结果,精确到小数点后8位。示例中展示了当x接近1.0472时,随着n值增大,计算结果的精度提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【问题描述】

已知cosx的近似计算公式如下:

cosx = 1 - x2/2! + x4/4! - x6/6! + … + (-1)nx2n/(2n)!

其中x为弧度,n为大于等于0的整数。编写程序根据用户输入的x和n的值,利用上述近似计算公式计算cosx的近似值,要求输出结果小数点后保留8位。

【输入形式】

从控制台输入小数x(0<=x<=10)和整数n(0<=n<=1000),两数中间用空格分隔。

【输出形式】

控制台输出公式结果:小数点后保留8位。

【样例输入1】

1.0472 3
【样例输出1】

0.49996244
【样例输入2】

1.0472 49
【样例输出2】

0.49999788
【样例说明】

输入x为1.0472,n为3,求得cosx近似计算公式的值为0.49996244,小数点后保留8位;同样,输入x为1.0472,n为49,求得cosx近似计算公式的值为0.49999788,小数点后保留8位。

【评分标准】

共有5个测试点

'''
1.map(float, input().split())函数获取输入
2.判断n的大小
3.与sinx相同
4.注意n=0时的值
'''
def fun(m):
    num = 1
    for j in range(1, int(m) + 1):
        num = num * j
    return 1/num


x, n = map(float, input().split())
if n > 0:
    cx = 1.0
    for i in range(1, int(n) + 1):
        c1 = pow((-1), i)
        c2 = pow(x, 2*i)
        c3 = fun(2 * i)
        cx = cx + c1 * c2 * c3
    print('%.8f' % cx)
elif n == 0:
    print('%.8f' % (n + 1))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值