零、前言
2022年4月12日晚上我刷到了这道题“320.足球爱好者”: 我用了一大堆for和while循环语句,终于,解出来了。但在提交时一大部分TE(Time error)超时了,这使我头都大了,TE代码的修正往往比较困难。于是我去询问老师,老师答复,这里要以数学的思维解这道题。 我又敲了一会代码,全部AC通过了。
一、题目详细
1.题目描述
MIKE爱好踢足球,他的梦想是代表中国队参加世界杯,所以他在放学路上经常练习踢易拉罐。在一条直线上,MIKE位置在0,共有n个易拉罐,位置在x1,x2,x3,…,xn,可能有重复,可能有负数。目标在位置m,MIKE每踢一脚,易拉罐向正方向滚10。他往正方向走,遇到每个易拉罐都踢一次,请问踢多少次才会有易拉罐的位置超过目标位置或等于目标位置?
输入格式:
输入第一行是正整数n和m,1<=n<=100,1<=m<=1000。第二行有n个整数,绝对值不超过10000,保证有至少一个正数。
输出格式:
输出一个正整数。
2.输入样例
2 22
1 2
3.输出样例
4
4.解题思路
在本题中:
假设只用一个罐子,是不是很轻松就能算出要踢几下才能到达终点?
现在有n个罐子,如果依次算出每个罐子到达终点m中要踢的脚数在加起来就有错,因为如果有一个罐子到达终点,就不用踢了,所以各个罐子踢得最后一脚就只用保留1。
因此,我们再算每个罐子时少算1下,最后统计时在ans中在加1,就达到了目标。下面奉上代码,来之不易,点个赞呗。
5.AC代码
#include<iostream>//调用输入输出流头文件
#include<cmath>//调用数学函数头文件
#include<algorithm>//调用算法头文件
using namespace std;//使用标准名字空间
double x[10009],m;//定义数组x,包含10009个浮点数类型变量,代表易拉罐的位置的集合,定义浮点数类型变量m
int n,ans=0;//定义整数类型变量n,ans代表易拉罐的数量,步数之和并初始化赋值为0
bool ever_up_m;//定义布尔类型变量ever_up_m,代表是否有易拉罐一开始就超过目标位置m
int main(){//主函数开始
cin>>n>>m;//输入n,m的值
for(int i=0;i<n;i++){//for循环,计数器i从0自增到n-1,共循环n次
cin>>x[i];//输入x的i号元素
if(x[i]>=m){//如果x的i号元素大于等于m
ever_up_m=true;//将ever_up_m赋值为真值
}
}if(ever_up_m){//如果ever_up_m为真
cout<<ans;//输出ans的值,此时为0
return 0;//主函数结束,返回0
}
for(int i=0;i<n;i++){//for循环,计数器i从0自增到n-1,共循环n次
if(x[i]>=0)//如果x的i号元素大于0
ans+=ceil((m-x[i])/10)-1;//ans自增m键x的i号元素除以10的向上取整减一
}
cout<<++ans;//输出ans自增1后的值
return 0;//主函数结束,返回0
}
二、结束语
那么本期刷题笔记就到此结束了,谢谢大家的收看。