人工蜂群算法求解TSP旅行商问题C++(2020.11.13)

1、输入数据文件:bayg29.tsp

   1    1150.0  1760.0
   2     630.0  1660.0
   3      40.0  2090.0
   4     750.0  1100.0
   5     750.0  2030.0
   6    1030.0  2070.0
   7    1650.0   650.0
   8    1490.0  1630.0
   9     790.0  2260.0
  10     710.0  1310.0
  11     840.0   550.0
  12    1170.0  2300.0
  13     970.0  1340.0
  14     510.0   700.0
  15     750.0   900.0
  16    1280.0  1200.0
  17     230.0   590.0
  18     460.0   860.0
  19    1040.0   950.0
  20     590.0  1390.0
  21     830.0  1770.0
  22     490.0   500.0
  23    1840.0  1240.0
  24    1260.0  1500.0
  25    1280.0   790.0
  26     490.0  2130.0
  27    1460.0  1420.0
  28    1260.0  1910.0
  29     360.0  1980.0

2、头文件

#include <iostream>
#include <string>
#include <fstream>
#include <random>
#include <time.h>
using namespace std;

3、所需的类

        程序中用到了城市类City、包含城市的地图类Graph、蜜蜂类Bee和人工蜂群算法类ABC

3.1 城市类City

class City
{
public:
	string name;//城市名称
	double x, y;//城市点的二维坐标
	void shuchu()
	{
		std::cout << name + ":" << "(" << x << "," << y << ")" << endl;
	}
};

3.2 包含城市的地图类Graph

class Graph
{
public:
	int Citycount;
	City *city;//城市数组
	double distance[citycount][citycount];//城市间的距离矩阵
	void Readcoordinatetxt(string txtfilename)//读取城市坐标文件的函数
	{
		Citycount = citycount;
		city = new City[Citycount];
		ifstream myfile(txtfilename, ios::in);
		double x = 0, y = 0;
		int z = 0;
		if (!myfile.fail())
		{
			int i = 0;
			while (!myfile.eof() && (myfile >> z >> x >> y))
			{
				city[i].name = to_string(_Longlong(z));//城市名称转化为字符串
				city[i].x = x; city[i].y = y;
				i++;
			}
		}
		else
			cout << "文件不存在";
		myfile.close();//计算城市距离矩阵
		for (int i = 0; i < citycount; i++)
			for (int j = 0; j < citycount; j++)
			{
				distance[i][j] = sqrt((pow((city[i].x - city[j].x), 2) + pow((city[i].y - city[j].y), 2)) / 10.0);//计算城市ij之间的伪欧式距离
				if (round(distance[i][j] < distance[i][j]))distance[i][j] = round(distance[i][j]) + 1;
				else distance[i][j] = round(distance[i][j]);
			}
	}
	void shuchu()
	{
		cout << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
		for (int i = 0; i < citycount; i++)
			city[i].shuchu();
		cout << "距离矩阵: " << endl;
		for (int i = 0; i < citycount; i++)
		{
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					std::cout << distance[i][j] << endl;
				else
					std::cout << distance[i][j] << "  ";
			}
		}
	}
};

3.3 蜜蜂类Bee

class Bee
{
	public:
		int dimension;//变量的维数
		int *x;
		double fitdegreevalue = 0;
		double selectprobability = 0;
		int limitcishu = 0;
		void Init(int Dimension)
		{
			dimension = Dimension;
			x = new int[dimension];
			for (int j = 0; j < citycount; j++)
			{
				*(x + j) = round(xmin + u(random)*(xmax - xmin));//随机初始化可行解
			}
			Adjuxt_validParticle(x);//对蜜源路径进行有效性调整,确保是TSP问题的一个可行解
		}
		void shuchu()
		{
			for (int j = 0; j < dimension; j++)
			{
				if (j == dimension - 1)std::cout << x[j] << ")"<< endl;
				else if (j == 0)
					std::cout << "(" << x[j] << ", ";
				else
					std::cout << x[j] << ", ";
			}
		}
};

3.4 人工蜂群算法类ABC

class ABC
{
public:
	Bee *miyuan, bestmiyuan, *employedbee, *onlookerbee;//蜜源、最好蜜源、雇佣蜂、观察蜂
	int SN;//雇佣蜂的数量、蜜源的数量、观察蜂的数量相等
	int Dimension;//可行解的维数
	int MCN;//终止代数
	int Limit;//为防止算法陷入局部最优,蜜源最大改进次数
	void Init(int sn, int dimension, int mcn, int limit)
	{
		SN = sn;
		Dimension = dimension;
		MCN = mcn;
		Limit = limit;
		miyuan = new Bee[SN];
		employedbee = new Bee[SN];
		onlookerbee = new Bee[SN];
		for (int i = 0; i < SN; i++)
		{
			(miyuan + i)->Init(Dimension);
			double beefunvalue = CalculateFitValue(*(miyuan + i));
			(miyuan + i)->fitdegreevalue = CalculateFitDegree(beefunvalue);

			(employedbee + i)->Init(Dimension);
			double employedbeefunvalue = CalculateFitValue(*(employedbee + i));
			(employedbee + i)->fitdegreevalue = CalculateFitDegree(employedbeefunvalue);

			(onlookerbee + i)->Init(Dimension);
			double onlookerbeefunvalue = CalculateFitValue(*(onlookerbee + i));
			(onlookerbee + i)->fitdegreevalue = CalculateFitDegree(onlookerbeefunvalue);
		}
		bestmiyuan.Init(Dimension);//最好蜜源初始化
		for (int j = 0; j < Dimension; j++)
		{
			bestmiyuan.x[j] = miyuan->x[j];
		}
		bestmiyuan.fitdegreevalue = miyuan->fitdegreevalue;
	}
	double CalculateFitValue(Bee be)//适应值计算函数,即计算路径长度
	{
		double funvalue = 0;
		for (int i = 0; i < citycount - 1; i++)
			funvalue += Map_City.distance[be.x[i]-1][be.x[i + 1]-1];
		funvalue += Map_City.distance[be.x[citycount - 1]-1][be.x[0]-1];
		return funvalue;
	}
	double CalculateFitDegree(double fi)//计算适应度的函数
	{
		double fitnessdu = 0;
		if (fi > 0)
			fitnessdu = 1.0 / (1 + fi);
		else
			fitnessdu = 1 + abs(fi);
		return fitnessdu;
	}
	void EmployedBeeOperate()//雇佣蜂操作函数
	{
		std::uniform_int_distribution<int> uD(1, Dimension); //随机数分布对象
		std::uniform_int_distribution<int> uSN(1, SN); //随机数分布对象
		for (int i = 0; i < SN; i++)
		{
			for (int j = 0; j < Dimension; j++)//雇佣峰利用先前的蜜源信息寻找新的蜜源
			{
				(employedbee + i)->x[j] = (miyuan + i)->x[j];
			}
			int k, jie;//随机生成且 k≠i k∈[1,SN]
			jie = uD(random) - 1;//jie为【1,Dimension】上的随机数
			double φ = u1(random);//φ表示[-1,1]之间的随机数
			while (true)
			{
				k = uSN(random) - 1;
				if (k != i)break;
			}
			(employedbee + i)->x[jie] = (miyuan + i)->x[jie] + φ*((miyuan + i)->x[jie] - (miyuan + k)->x[jie]);//搜索新蜜源
			//保证蜜源位置不越界
			if ((employedbee + i)->x[jie] > xmax) (employedbee + i)->x[jie] = xmax;
			else if ((employedbee + i)->x[jie] < xmin) (employedbee + i)->x[jie] = xmin;
			Adjuxt_validParticle((employedbee + i)->x);//对蜜源路径进行有效性调整,确保是TSP问题的一个可行解
			(employedbee + i)->fitdegreevalue = CalculateFitDegree(CalculateFitValue(*(employedbee + i)));//计算适应度值																							  //雇佣蜂根据贪心策略选择蜜源
			if (CalculateFitValue(*(employedbee + i)) < CalculateFitValue(*(miyuan + i)))
			{
				for (int j = 0; j < Dimension; j++)
					(miyuan + i)->x[j] = (employedbee + i)->x[j];
				(miyuan + i)->limitcishu = 0;
				(miyuan + i)->fitdegreevalue = (employedbee + i)->fitdegreevalue;
			}
			else
				(miyuan + i)->limitcishu++;//蜜源未改进次数加一
		}
	}
	void CalculateProbability()//计算蜜源概率的函数
	{
		for (int i = 0; i < SN; i++)
		{
			(miyuan + i)->fitdegreevalue = CalculateFitDegree(CalculateFitValue(*(miyuan + i)));
		}
		double sumfitdegreevalue = 0;
		for (int i = 0; i < SN; i++)
		{
			sumfitdegreevalue += (miyuan + i)->fitdegreevalue;
		}
		for (int i = 0; i < SN; i++)
		{
			(miyuan + i)->selectprobability = (miyuan + i)->fitdegreevalue / sumfitdegreevalue;
		}
	}
	void OnLookerBeeOperate()//观察蜂操作
	{
		std::uniform_int_distribution<int> uD(1, Dimension); //随机数分布对象
		std::uniform_int_distribution<int> uSN(1, SN); //随机数分布对象
		int m = 0;
		while (m < SN)//为所有的观察蜂按照概率选择蜜源并搜索新蜜源,计算新蜜源适应值
		{
			double m_choosedprobability = u(random);//0~1之间的随机数
			for (int i = 0; i < SN; i++)
			{
				if (m_choosedprobability < (miyuan + i)->selectprobability)
				{
					int k, jie;//随机生成且 k≠i k∈[1,SN]
					jie = uD(random) - 1;//jie为【1,Dimension】上的随机数
					double φ = u1(random);//φ表示[-1,1]之间的随机数
					while (true)
					{
						k = uSN(random) - 1;
						if (k != i)break;
					}
					for (int j = 0; j < Dimension; j++)
						(onlookerbee + m)->x[j] = (miyuan + i)->x[j];
					(onlookerbee + m)->x[jie] = (miyuan + i)->x[jie] + φ*((miyuan + i)->x[jie] - (miyuan + k)->x[jie]);//搜索新蜜源
					if ((onlookerbee + m)->x[jie] > xmax) (onlookerbee + m)->x[jie] = xmax;
					else if ((onlookerbee + m)->x[jie] < xmin) (onlookerbee + m)->x[jie] = xmin;//判断是否越界
					Adjuxt_validParticle((onlookerbee + m)->x);//对蜜源路径进行有效性调整,确保是TSP问题的一个可行解
					(onlookerbee + m)->fitdegreevalue = CalculateFitDegree(CalculateFitValue(*(onlookerbee + m)));
					//贪心策略选择蜜源
					if (CalculateFitValue(*(onlookerbee + m)) < CalculateFitValue(*(miyuan + i)))
					{
						for (int j = 0; j < Dimension; j++)
							(miyuan + i)->x[j] = (onlookerbee + m)->x[j];
						(miyuan + i)->fitdegreevalue = (onlookerbee + m)->fitdegreevalue;
					}
					else
						(miyuan + i)->limitcishu++;
					m++;
				}break;
			}
		}
	}
	void ScoutBeeOperate()//侦查蜂操作,决定蜜源是否放弃,并随机产生新位置替代原蜜源
	{
		for (int i = 0; i < SN; i++)
		{
			if ((miyuan + i)->limitcishu >= Limit)
			{
				for (int j = 0; j < Dimension; j++)
				{
					(miyuan + i)->x[j] = round(xmin + u(random)*(xmax - xmin));//随机初始化可行解;//随机产生可行解
				}
				Adjuxt_validParticle((miyuan + i)->x);
				(miyuan + i)->limitcishu = 0;
				(miyuan + i)->fitdegreevalue = CalculateFitDegree(CalculateFitValue(*(miyuan + i)));
			}
		}
	}
	void SaveBestMiyuan()//记录最优解的函数
	{
		for (int i = 0; i < SN; i++)
		{
			if (CalculateFitValue(*(miyuan + i)) < CalculateFitValue(bestmiyuan))
			{
				for (int j = 0; j < Dimension; j++)
					bestmiyuan.x[j] = (miyuan + i)->x[j];
			}
		}
	}
	void shuchumiyuan()
	{
		for (int i = 0; i < SN; i++)
		{
			std::cout << "蜜源" << i + 1<<"->";
			for (int j = 0; j < Dimension; j++)
			{
				if (j == Dimension - 1)std::cout << (miyuan + i)->x[j] <<")对应的距离为: "<<CalculateFitValue(*(miyuan+i))<< endl;
				else if(j==0)
					std::cout <<"("<< (miyuan + i)->x[j] << ", ";
				else
					std::cout << (miyuan + i)->x[j] << ", ";
			}
		}
	}
	void ShuchuBestmiyuan()
	{
		for (int j = 0; j < Dimension; j++)
		{
			if (j == Dimension - 1) std::cout << bestmiyuan.x[j] << ")" << "对应的距离为:" << CalculateFitValue(bestmiyuan) << endl;
			else if (j == 0) std::cout << "(" << bestmiyuan.x[j] << ",";
			else std::cout << bestmiyuan.x[j] << ",";
		}
	}
	void DoABC(int sn, int dimension, int mcn, int limit,string filename)//运行人工蜂群算法的函数
	{
		ofstream outfile;
		outfile.open("result.txt", ios::trunc);
		Map_City.Readcoordinatetxt(filename);
		Map_City.shuchu();
		outfile << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
		for (int i = 0; i < citycount; i++)
			outfile << Map_City.city[i].name << " " << Map_City.city[i].x << " " << Map_City.city[i].y << endl;
		outfile << "距离矩阵: " << endl;
		for (int i = 0; i < citycount; i++)
		{
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					outfile << Map_City.distance[i][j] << endl;
				else
					outfile << Map_City.distance[i][j] << "  ";
			}
		}
		Init(sn, dimension, mcn, limit);//初始化
		shuchumiyuan();
		outfile << "初始化后的蜜源如下:" << endl;
		for (int i = 0; i < SN; i++)
		{
			outfile << "蜜源" << i + 1 << "->";
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					outfile << (miyuan + i)->x[j] << ") = " << CalculateFitValue(*(miyuan + i)) << endl;
				else if (j == 0)
					outfile << "f(" << (miyuan + i)->x[j] << ",";
				else
					outfile << (miyuan + i)->x[j] << ",";
			}
		}
		SaveBestMiyuan();//保存最好蜜源
		ShuchuBestmiyuan();
		for (int k = 0; k < MCN; k++)
		{
			EmployedBeeOperate();
			CalculateProbability();
			OnLookerBeeOperate();
			SaveBestMiyuan();
			ScoutBeeOperate();
			SaveBestMiyuan();
			std::cout << "第" << k + 1 << "次迭代的最优解为:";
			ShuchuBestmiyuan();
			outfile << "第"<<k+1<<"次迭代后的蜜源如下:" << endl;
			for (int i = 0; i < SN; i++)
			{
				outfile << "蜜源" << i + 1 << "->";
				for (int j = 0; j < citycount; j++)
				{
					if (j == citycount - 1)
						outfile << (miyuan + i)->x[j] << ") = " << CalculateFitValue(*(miyuan + i)) << endl;
					else if (j == 0)
						outfile << "f(" << (miyuan + i)->x[j] << ",";
					else
						outfile << (miyuan + i)->x[j] << ",";
				}
			}
			outfile << "第" << k + 1 << "次迭代的最优蜜源为:";
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					outfile << bestmiyuan.x[j] << ") = " << CalculateFitValue(bestmiyuan) << endl;
				else if (j == 0)
					outfile << "f(" << bestmiyuan.x[j] << ",";
				else
					outfile << bestmiyuan.x[j] << ",";
			}
		}
		outfile.close();
	}
};

4、自定义函数

        自定义的函数有两个:四舍五入取整函数蜜源路径有效性调整函数

4.1 四舍五入取整函数

double round(double r) { return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5); }

4.2 调整蜜源路径有效性的函数

void Adjuxt_validParticle(int x[citycount])//调整蜜源路径有效性的函数,使得蜜源的位置符合TSP问题解的一个排列
{
	int route[citycount];//1-citycount
	bool flag[citycount];//对应route数组中是否在位置中存在的数组,参考数组为route
	int biaoji[citycount];//对每个元素进行标记的数组,参考数组为粒子位置x
	for (int j = 0; j < citycount; j++)
	{
		route[j] = j + 1;
		flag[j] = false;
		biaoji[j] = 0;
	}
	//首先判断位置中是否有某个城市且唯一,若有且唯一,则对应flag的值为true,
	for (int j = 0; j < citycount; j++)
	{
		int num = 0;
		for (int k = 0; k < citycount; k++)
		{
			if (x[k] == route[j])
			{
				biaoji[k] = 1;//说明k号元素对应的城市在route中,并且是第一次出现才进行标记
				num++; break;
			}
		}
		if (num == 0) flag[j] = false;//路线中没有route[j]这个城市
		else if (num == 1) flag[j] = true;//路线中有route[j]这个城市
	}
	for (int k = 0; k < citycount; k++)
	{
		if (flag[k] == false)//路线中没有route[k]这个城市,需要将这个城市加入到路线中
		{
			int i = 0;
			for (; i < citycount; i++)
			{
				if (biaoji[i] != 1)break;
			}
			x[i] = route[k];//对于标记为0的进行替换
			biaoji[i] = 1;
		}
	}
}

5、全局变量

const int citycount = 29;
double xmax = citycount, xmin = 1;
std::default_random_engine random((unsigned int)time(NULL));
std::uniform_real_distribution<double> u(0, 1); //随机数分布对象
std::uniform_real_distribution<double> u1(-1, 1); //随机数分布对象
Graph Map_City;//定义全局对象图,放在Graph类后

6、主函数

int main()
{
	system("mode con cols=200");
	system("color fc");
	std::cout << "人工蜂群算法求解TSP旅行商问题!" << endl;
	ABC abc;
	abc.DoABC(50, citycount, 200, 20, "E:\\计算智能代码\\ABC_TSP\\ABC_TSP\\bayg29.tsp");
	system("pause");
	return 0;
}

7、运行结果

7.1 控制台结果

在这里插入图片描述

7.2 生成的result.txt文件结果

在这里插入图片描述
在这里插入图片描述

8、MATLAB绘制最优路径结果

在这里插入图片描述

附录(完整代码)

#include <iostream>
#include <string>
#include <fstream>
#include <random>
#include <time.h>
using namespace std;
const int citycount = 29;
double xmax = citycount, xmin = 1;
std::default_random_engine random((unsigned int)time(NULL));
std::uniform_real_distribution<double> u(0, 1); //随机数分布对象
std::uniform_real_distribution<double> u1(-1, 1); //随机数分布对象
class City
{
public:
	string name;//城市名称
	double x, y;//城市点的二维坐标
	void shuchu()
	{
		std::cout << name + ":" << "(" << x << "," << y << ")" << endl;
	}
};
class Graph
{
public:
	int Citycount;
	City *city;//城市数组
	double distance[citycount][citycount];//城市间的距离矩阵
	void Readcoordinatetxt(string txtfilename)//读取城市坐标文件的函数
	{
		Citycount = citycount;
		city = new City[Citycount];
		ifstream myfile(txtfilename, ios::in);
		double x = 0, y = 0;
		int z = 0;
		if (!myfile.fail())
		{
			int i = 0;
			while (!myfile.eof() && (myfile >> z >> x >> y))
			{
				city[i].name = to_string(_Longlong(z));//城市名称转化为字符串
				city[i].x = x; city[i].y = y;
				i++;
			}
		}
		else
			cout << "文件不存在";
		myfile.close();//计算城市距离矩阵
		for (int i = 0; i < citycount; i++)
			for (int j = 0; j < citycount; j++)
			{
				distance[i][j] = sqrt((pow((city[i].x - city[j].x), 2) + pow((city[i].y - city[j].y), 2)) / 10.0);//计算城市ij之间的伪欧式距离
				if (round(distance[i][j] < distance[i][j]))distance[i][j] = round(distance[i][j]) + 1;
				else distance[i][j] = round(distance[i][j]);
			}
	}
	void shuchu()
	{
		cout << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
		for (int i = 0; i < citycount; i++)
			city[i].shuchu();
		cout << "距离矩阵: " << endl;
		for (int i = 0; i < citycount; i++)
		{
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					std::cout << distance[i][j] << endl;
				else
					std::cout << distance[i][j] << "  ";
			}
		}
	}
};
Graph Map_City;//定义全局对象图,放在Graph类后
double round(double r) { return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5); }
void Adjuxt_validParticle(int x[citycount])//调整蜜源路径有效性的函数,使得蜜源的位置符合TSP问题解的一个排列
{
	int route[citycount];//1-citycount
	bool flag[citycount];//对应route数组中是否在位置中存在的数组,参考数组为route
	int biaoji[citycount];//对每个元素进行标记的数组,参考数组为粒子位置x
	for (int j = 0; j < citycount; j++)
	{
		route[j] = j + 1;
		flag[j] = false;
		biaoji[j] = 0;
	}
	//首先判断位置中是否有某个城市且唯一,若有且唯一,则对应flag的值为true,
	for (int j = 0; j < citycount; j++)
	{
		int num = 0;
		for (int k = 0; k < citycount; k++)
		{
			if (x[k] == route[j])
			{
				biaoji[k] = 1;//说明k号元素对应的城市在route中,并且是第一次出现才进行标记
				num++; break;
			}
		}
		if (num == 0) flag[j] = false;//路线中没有route[j]这个城市
		else if (num == 1) flag[j] = true;//路线中有route[j]这个城市
	}
	for (int k = 0; k < citycount; k++)
	{
		if (flag[k] == false)//路线中没有route[k]这个城市,需要将这个城市加入到路线中
		{
			int i = 0;
			for (; i < citycount; i++)
			{
				if (biaoji[i] != 1)break;
			}
			x[i] = route[k];//对于标记为0的进行替换
			biaoji[i] = 1;
		}
	}
}
class Bee
{
	public:
		int dimension;//变量的维数
		int *x;
		double fitdegreevalue = 0;
		double selectprobability = 0;
		int limitcishu = 0;
		void Init(int Dimension)
		{
			dimension = Dimension;
			x = new int[dimension];
			for (int j = 0; j < citycount; j++)
			{
				*(x + j) = round(xmin + u(random)*(xmax - xmin));//随机初始化可行解
			}
			Adjuxt_validParticle(x);//对蜜源路径进行有效性调整,确保是TSP问题的一个可行解
		}
		void shuchu()
		{
			for (int j = 0; j < dimension; j++)
			{
				if (j == dimension - 1)std::cout << x[j] << ")"<< endl;
				else if (j == 0)
					std::cout << "(" << x[j] << ", ";
				else
					std::cout << x[j] << ", ";
			}
		}
};
class ABC
{
public:
	Bee *miyuan, bestmiyuan, *employedbee, *onlookerbee;//蜜源、最好蜜源、雇佣蜂、观察蜂
	int SN;//雇佣蜂的数量、蜜源的数量、观察蜂的数量相等
	int Dimension;//可行解的维数
	int MCN;//终止代数
	int Limit;//为防止算法陷入局部最优,蜜源最大改进次数
	void Init(int sn, int dimension, int mcn, int limit)
	{
		SN = sn;
		Dimension = dimension;
		MCN = mcn;
		Limit = limit;
		miyuan = new Bee[SN];
		employedbee = new Bee[SN];
		onlookerbee = new Bee[SN];
		for (int i = 0; i < SN; i++)
		{
			(miyuan + i)->Init(Dimension);
			double beefunvalue = CalculateFitValue(*(miyuan + i));
			(miyuan + i)->fitdegreevalue = CalculateFitDegree(beefunvalue);

			(employedbee + i)->Init(Dimension);
			double employedbeefunvalue = CalculateFitValue(*(employedbee + i));
			(employedbee + i)->fitdegreevalue = CalculateFitDegree(employedbeefunvalue);

			(onlookerbee + i)->Init(Dimension);
			double onlookerbeefunvalue = CalculateFitValue(*(onlookerbee + i));
			(onlookerbee + i)->fitdegreevalue = CalculateFitDegree(onlookerbeefunvalue);
		}
		bestmiyuan.Init(Dimension);//最好蜜源初始化
		for (int j = 0; j < Dimension; j++)
		{
			bestmiyuan.x[j] = miyuan->x[j];
		}
		bestmiyuan.fitdegreevalue = miyuan->fitdegreevalue;
	}
	double CalculateFitValue(Bee be)//适应值计算函数,即计算路径长度
	{
		double funvalue = 0;
		for (int i = 0; i < citycount - 1; i++)
			funvalue += Map_City.distance[be.x[i]-1][be.x[i + 1]-1];
		funvalue += Map_City.distance[be.x[citycount - 1]-1][be.x[0]-1];
		return funvalue;
	}
	double CalculateFitDegree(double fi)//计算适应度的函数
	{
		double fitnessdu = 0;
		if (fi > 0)
			fitnessdu = 1.0 / (1 + fi);
		else
			fitnessdu = 1 + abs(fi);
		return fitnessdu;
	}
	void EmployedBeeOperate()//雇佣蜂操作函数
	{
		std::uniform_int_distribution<int> uD(1, Dimension); //随机数分布对象
		std::uniform_int_distribution<int> uSN(1, SN); //随机数分布对象
		for (int i = 0; i < SN; i++)
		{
			for (int j = 0; j < Dimension; j++)//雇佣峰利用先前的蜜源信息寻找新的蜜源
			{
				(employedbee + i)->x[j] = (miyuan + i)->x[j];
			}
			int k, jie;//随机生成且 k≠i k∈[1,SN]
			jie = uD(random) - 1;//jie为【1,Dimension】上的随机数
			double φ = u1(random);//φ表示[-1,1]之间的随机数
			while (true)
			{
				k = uSN(random) - 1;
				if (k != i)break;
			}
			(employedbee + i)->x[jie] = (miyuan + i)->x[jie] + φ*((miyuan + i)->x[jie] - (miyuan + k)->x[jie]);//搜索新蜜源
			//保证蜜源位置不越界
			if ((employedbee + i)->x[jie] > xmax) (employedbee + i)->x[jie] = xmax;
			else if ((employedbee + i)->x[jie] < xmin) (employedbee + i)->x[jie] = xmin;
			Adjuxt_validParticle((employedbee + i)->x);//对蜜源路径进行有效性调整,确保是TSP问题的一个可行解
			(employedbee + i)->fitdegreevalue = CalculateFitDegree(CalculateFitValue(*(employedbee + i)));//计算适应度值																							  //雇佣蜂根据贪心策略选择蜜源
			if (CalculateFitValue(*(employedbee + i)) < CalculateFitValue(*(miyuan + i)))
			{
				for (int j = 0; j < Dimension; j++)
					(miyuan + i)->x[j] = (employedbee + i)->x[j];
				(miyuan + i)->limitcishu = 0;
				(miyuan + i)->fitdegreevalue = (employedbee + i)->fitdegreevalue;
			}
			else
				(miyuan + i)->limitcishu++;//蜜源未改进次数加一
		}
	}
	void CalculateProbability()//计算蜜源概率的函数
	{
		for (int i = 0; i < SN; i++)
		{
			(miyuan + i)->fitdegreevalue = CalculateFitDegree(CalculateFitValue(*(miyuan + i)));
		}
		double sumfitdegreevalue = 0;
		for (int i = 0; i < SN; i++)
		{
			sumfitdegreevalue += (miyuan + i)->fitdegreevalue;
		}
		for (int i = 0; i < SN; i++)
		{
			(miyuan + i)->selectprobability = (miyuan + i)->fitdegreevalue / sumfitdegreevalue;
		}
	}
	void OnLookerBeeOperate()//观察蜂操作
	{
		std::uniform_int_distribution<int> uD(1, Dimension); //随机数分布对象
		std::uniform_int_distribution<int> uSN(1, SN); //随机数分布对象
		int m = 0;
		while (m < SN)//为所有的观察蜂按照概率选择蜜源并搜索新蜜源,计算新蜜源适应值
		{
			double m_choosedprobability = u(random);//0~1之间的随机数
			for (int i = 0; i < SN; i++)
			{
				if (m_choosedprobability < (miyuan + i)->selectprobability)
				{
					int k, jie;//随机生成且 k≠i k∈[1,SN]
					jie = uD(random) - 1;//jie为【1,Dimension】上的随机数
					double φ = u1(random);//φ表示[-1,1]之间的随机数
					while (true)
					{
						k = uSN(random) - 1;
						if (k != i)break;
					}
					for (int j = 0; j < Dimension; j++)
						(onlookerbee + m)->x[j] = (miyuan + i)->x[j];
					(onlookerbee + m)->x[jie] = (miyuan + i)->x[jie] + φ*((miyuan + i)->x[jie] - (miyuan + k)->x[jie]);//搜索新蜜源
					if ((onlookerbee + m)->x[jie] > xmax) (onlookerbee + m)->x[jie] = xmax;
					else if ((onlookerbee + m)->x[jie] < xmin) (onlookerbee + m)->x[jie] = xmin;//判断是否越界
					Adjuxt_validParticle((onlookerbee + m)->x);//对蜜源路径进行有效性调整,确保是TSP问题的一个可行解
					(onlookerbee + m)->fitdegreevalue = CalculateFitDegree(CalculateFitValue(*(onlookerbee + m)));
					//贪心策略选择蜜源
					if (CalculateFitValue(*(onlookerbee + m)) < CalculateFitValue(*(miyuan + i)))
					{
						for (int j = 0; j < Dimension; j++)
							(miyuan + i)->x[j] = (onlookerbee + m)->x[j];
						(miyuan + i)->fitdegreevalue = (onlookerbee + m)->fitdegreevalue;
					}
					else
						(miyuan + i)->limitcishu++;
					m++;
				}break;
			}
		}
	}
	void ScoutBeeOperate()//侦查蜂操作,决定蜜源是否放弃,并随机产生新位置替代原蜜源
	{
		for (int i = 0; i < SN; i++)
		{
			if ((miyuan + i)->limitcishu >= Limit)
			{
				for (int j = 0; j < Dimension; j++)
				{
					(miyuan + i)->x[j] = round(xmin + u(random)*(xmax - xmin));//随机初始化可行解;//随机产生可行解
				}
				Adjuxt_validParticle((miyuan + i)->x);
				(miyuan + i)->limitcishu = 0;
				(miyuan + i)->fitdegreevalue = CalculateFitDegree(CalculateFitValue(*(miyuan + i)));
			}
		}
	}
	void SaveBestMiyuan()//记录最优解的函数
	{
		for (int i = 0; i < SN; i++)
		{
			if (CalculateFitValue(*(miyuan + i)) < CalculateFitValue(bestmiyuan))
			{
				for (int j = 0; j < Dimension; j++)
					bestmiyuan.x[j] = (miyuan + i)->x[j];
			}
		}
	}
	void shuchumiyuan()
	{
		for (int i = 0; i < SN; i++)
		{
			std::cout << "蜜源" << i + 1<<"->";
			for (int j = 0; j < Dimension; j++)
			{
				if (j == Dimension - 1)std::cout << (miyuan + i)->x[j] <<")对应的距离为: "<<CalculateFitValue(*(miyuan+i))<< endl;
				else if(j==0)
					std::cout <<"("<< (miyuan + i)->x[j] << ", ";
				else
					std::cout << (miyuan + i)->x[j] << ", ";
			}
		}
	}
	void ShuchuBestmiyuan()
	{
		for (int j = 0; j < Dimension; j++)
		{
			if (j == Dimension - 1) std::cout << bestmiyuan.x[j] << ")" << "对应的距离为:" << CalculateFitValue(bestmiyuan) << endl;
			else if (j == 0) std::cout << "(" << bestmiyuan.x[j] << ",";
			else std::cout << bestmiyuan.x[j] << ",";
		}
	}
	void DoABC(int sn, int dimension, int mcn, int limit,string filename)//运行人工蜂群算法的函数
	{
		ofstream outfile;
		outfile.open("result.txt", ios::trunc);
		Map_City.Readcoordinatetxt(filename);
		Map_City.shuchu();
		outfile << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
		for (int i = 0; i < citycount; i++)
			outfile << Map_City.city[i].name << " " << Map_City.city[i].x << " " << Map_City.city[i].y << endl;
		outfile << "距离矩阵: " << endl;
		for (int i = 0; i < citycount; i++)
		{
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					outfile << Map_City.distance[i][j] << endl;
				else
					outfile << Map_City.distance[i][j] << "  ";
			}
		}
		Init(sn, dimension, mcn, limit);//初始化
		shuchumiyuan();
		outfile << "初始化后的蜜源如下:" << endl;
		for (int i = 0; i < SN; i++)
		{
			outfile << "蜜源" << i + 1 << "->";
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					outfile << (miyuan + i)->x[j] << ") = " << CalculateFitValue(*(miyuan + i)) << endl;
				else if (j == 0)
					outfile << "f(" << (miyuan + i)->x[j] << ",";
				else
					outfile << (miyuan + i)->x[j] << ",";
			}
		}
		SaveBestMiyuan();//保存最好蜜源
		ShuchuBestmiyuan();
		for (int k = 0; k < MCN; k++)
		{
			EmployedBeeOperate();
			CalculateProbability();
			OnLookerBeeOperate();
			SaveBestMiyuan();
			ScoutBeeOperate();
			SaveBestMiyuan();
			std::cout << "第" << k + 1 << "次迭代的最优解为:";
			ShuchuBestmiyuan();
			outfile << "第"<<k+1<<"次迭代后的蜜源如下:" << endl;
			for (int i = 0; i < SN; i++)
			{
				outfile << "蜜源" << i + 1 << "->";
				for (int j = 0; j < citycount; j++)
				{
					if (j == citycount - 1)
						outfile << (miyuan + i)->x[j] << ") = " << CalculateFitValue(*(miyuan + i)) << endl;
					else if (j == 0)
						outfile << "f(" << (miyuan + i)->x[j] << ",";
					else
						outfile << (miyuan + i)->x[j] << ",";
				}
			}
			outfile << "第" << k + 1 << "次迭代的最优蜜源为:";
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					outfile << bestmiyuan.x[j] << ") = " << CalculateFitValue(bestmiyuan) << endl;
				else if (j == 0)
					outfile << "f(" << bestmiyuan.x[j] << ",";
				else
					outfile << bestmiyuan.x[j] << ",";
			}
		}
		outfile.close();
	}
};
int main()
{
	system("mode con cols=200");
	system("color fc");
	std::cout << "人工蜂群算法求解TSP旅行商问题!" << endl;
	ABC abc;
	abc.DoABC(50, citycount, 200, 20, "E:\\计算智能代码\\ABC_TSP\\ABC_TSP\\bayg29.tsp");
	system("pause");
	return 0;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值