HDU--1876--机器人系列2--DP

机器人系列2

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 996    Accepted Submission(s): 185


Problem Description
这又是一个简单的游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下:
1.机器人一开始在棋盘的起始点(1,1)并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.只有当机器人消耗完能量时才能获得相应格子上的能量。
请问机器人到达终点的过程中最多有几次完全消耗完能量,消耗完这么多次能量的方式有几种。
 

Input
输入
第一行输入一个整数T,表示数据的组数。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
 

Output
请问机器人到达终点的过程中最多有几次完全消耗完能量,消耗完这么多次能量的方式有几种。
 

Sample Input
  
  
1 6 6 4 5 6 6 4 3 2 2 3 1 7 2 1 1 4 6 2 7 5 8 4 3 9 5 7 6 6 2 1 5 3 1 1 3 7 2
 

Sample Output
  
  
3 4
 
思路:每个点应该要能记录的当前状态为:1,到达此点过程中消耗完能量的最多次数 2,符合1中条件的路线数
一个点把能量耗尽能到达一些点,对这些点要做这些处理:(假设从a走到b)
1,如果到达 a点的 能量耗完的次数加一b点记录的 能量耗完次数 相同,那么把 a路线数加到b
2,如果到达 a点的 能量耗完的次数加一 大于 b点记录的 次数,那么 重新记录 b点信息,即 b中能量耗完 最多次数 增加到a的次数 加一路线数a中的 路线数
还有一种特解情况,那就是当前点的能量能走到终点却没有耗完,那么直接不用 加一进行上面的操作

#include <iostream>
using namespace std;
int n,m,map[111][111];
struct node
{
    int num1,num2; //到达当前点状态,num1:耗完能量的最多次数,num2:满足num1的路线数
}ss[111][111];
void add(int x,int y,int xx,int yy,int k) //从(x,y)走到(xx,yy),k:标记此次移动能量是否耗完
{
    if(ss[xx][yy].num1==ss[x][y].num1+k) //相等则把路线数加上来
    ss[xx][yy].num2+=ss[x][y].num2;
    if(ss[xx][yy].num1<ss[x][y].num1+k) //如果当前走法得到的耗完能量最多次数更加多则更新耗完能量最多次数和路线数
    {
        ss[xx][yy].num1=ss[x][y].num1+k;
        ss[xx][yy].num2=ss[x][y].num2;
    }
}
int main (void)
{
    int t,i,j,k,l,x,y,xx,yy,v;
    cin>>t;
    while(t--&&cin>>n>>m)
    {
        for(i=1;i<=n;i++)
        for(j=1;j<=m;j++)
        {
            cin>>map[i][j];
            ss[i][j].num1=ss[i][j].num2=0;
        }
        ss[1][1].num2=1;
        for(i=1;i<=n;i++)
        for(j=1;j<=m;j++)
        {
            if(!ss[i][j].num2)continue; //为了优化,只要对先前到达过的点进行移动处理
            l=i+j+map[i][j]; //判断当前点能走的最远距离
            if(!map[i][j]||i==n&&j==m)continue; //如果当前点能量为0或者是终点,那么不用处理
            if(l>=n+m) //如果能走的最远距离大于或等于走到终点的距离,即能走到终点
            {
                add(i,j,n,m,(l==n+m)?1:0); //如果走到终点能量耗完,则标记1
                continue;
            }
            for(k=i;k<=l;k++) //遍历当前点右下方能走到的那些点
            {
                if(k<=n&&l-k<=m&&l-k>=j) //不出界
                {
                    add(i,j,k,l-k,1);
                }
            }
        }
        cout<<ss[n][m].num1<<" "<<ss[n][m].num2<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值