机器人系列2
1.机器人一开始在棋盘的起始点(1,1)并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.只有当机器人消耗完能量时才能获得相应格子上的能量。
请问机器人到达终点的过程中最多有几次完全消耗完能量,消耗完这么多次能量的方式有几种。
第一行输入一个整数T,表示数据的组数。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
1 6 6 4 5 6 6 4 3 2 2 3 1 7 2 1 1 4 6 2 7 5 8 4 3 9 5 7 6 6 2 1 5 3 1 1 3 7 2
3 4
#include <iostream>
using namespace std;
int n,m,map[111][111];
struct node
{
int num1,num2; //到达当前点状态,num1:耗完能量的最多次数,num2:满足num1的路线数
}ss[111][111];
void add(int x,int y,int xx,int yy,int k) //从(x,y)走到(xx,yy),k:标记此次移动能量是否耗完
{
if(ss[xx][yy].num1==ss[x][y].num1+k) //相等则把路线数加上来
ss[xx][yy].num2+=ss[x][y].num2;
if(ss[xx][yy].num1<ss[x][y].num1+k) //如果当前走法得到的耗完能量最多次数更加多则更新耗完能量最多次数和路线数
{
ss[xx][yy].num1=ss[x][y].num1+k;
ss[xx][yy].num2=ss[x][y].num2;
}
}
int main (void)
{
int t,i,j,k,l,x,y,xx,yy,v;
cin>>t;
while(t--&&cin>>n>>m)
{
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
cin>>map[i][j];
ss[i][j].num1=ss[i][j].num2=0;
}
ss[1][1].num2=1;
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
if(!ss[i][j].num2)continue; //为了优化,只要对先前到达过的点进行移动处理
l=i+j+map[i][j]; //判断当前点能走的最远距离
if(!map[i][j]||i==n&&j==m)continue; //如果当前点能量为0或者是终点,那么不用处理
if(l>=n+m) //如果能走的最远距离大于或等于走到终点的距离,即能走到终点
{
add(i,j,n,m,(l==n+m)?1:0); //如果走到终点能量耗完,则标记1
continue;
}
for(k=i;k<=l;k++) //遍历当前点右下方能走到的那些点
{
if(k<=n&&l-k<=m&&l-k>=j) //不出界
{
add(i,j,k,l-k,1);
}
}
}
cout<<ss[n][m].num1<<" "<<ss[n][m].num2<<endl;
}
return 0;
}