树状数组区间更改差分数组原理
1、单点更新,区间求和
int c[MAXN];
int sum(int x)
{
int res=0;
while(x)
{
res+=c[x];
x-=lowbit(x);
return res;
}
void add(int x,int n)
{
while(x<MAXN)
{
arr[x]+=n;
x+=lowbit(x);
}
int query(int x,int y)
{
return sum(y)-sum(x-1);
}
2、区间更新,单点查找
int c[MAXN];//差分数组对应的树状数组
int sum(int x)
{
int res=0;
while(x)
{
res+=c[x];
x-=lowbit(x);
return res;
}
void add(int x,int n)
{
while(x<MAXN)
{
c[x]+=n;
x+=lowbit(x);
}
}
int update(int x,int y,int n)
{
add(x,n);
add(y+1,-n);
}
3、区间更新,区间查询
#include<bits/stdc++.h>
using namespace std;
void add(int *c,int i,int date)
{
while(i<=n)
{
c[i]+=date;
i+=lowbit(i);
}
}
int getsum(int *c,int i)
{
ans=0;
while(i>0)
{
ans+=c[i];
i-=lowbit(i);
}
return ans;
}
int main()
{
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
add(c1,i,a[i]-a[i-1]);
add(c2,i,(i-1)*(a[i]-a[i-1]));
}
//a数组[x,y]区间求和
sum1=(x-1)*getsum(c1,x-1)-getsum(c2,x-1);
sum2=y*getsum(c1,y)-getsum(c2,y);
ans=sum2-sum1;
//x~y区间同时加z
add(c1,x,z);
add(c1,y+1,-z);
add(c2,x,z*(x-1));
add(c2,y+1,-z*y);
return 0;
}