树状数组总结

  树状数组区间更改差分数组原理

 

1、单点更新,区间求和

int c[MAXN];
int sum(int x)
{
    int res=0;
    while(x)
    {
        res+=c[x];
        x-=lowbit(x);
        return res;
    }
void add(int x,int n)
{
    while(x<MAXN)
    {
        arr[x]+=n;
        x+=lowbit(x);
    }
int query(int x,int y)
{
    return sum(y)-sum(x-1);
}

2、区间更新,单点查找

int c[MAXN];//差分数组对应的树状数组
int sum(int x)
{
    int res=0;
    while(x)
    {
        res+=c[x];
        x-=lowbit(x);
        return res;
    }
void add(int x,int n)
{
    while(x<MAXN)
    {
        c[x]+=n;
        x+=lowbit(x);
    }
}
int update(int x,int y,int n)
{
    add(x,n);
    add(y+1,-n);
}

3、区间更新,区间查询

#include<bits/stdc++.h>
using namespace std;

void add(int *c,int i,int date)
{
    while(i<=n)
    {
        c[i]+=date;
        i+=lowbit(i);
    }
}

int getsum(int *c,int i)
{
    ans=0;
    while(i>0)
    {
        ans+=c[i];
        i-=lowbit(i);
    }
    return ans;
}

int main()
{
    for(i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        add(c1,i,a[i]-a[i-1]);
        add(c2,i,(i-1)*(a[i]-a[i-1]));
    }
    //a数组[x,y]区间求和
    sum1=(x-1)*getsum(c1,x-1)-getsum(c2,x-1);
    sum2=y*getsum(c1,y)-getsum(c2,y);
    ans=sum2-sum1;
    //x~y区间同时加z
    add(c1,x,z);
    add(c1,y+1,-z);
    add(c2,x,z*(x-1));
    add(c2,y+1,-z*y);
    return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值