题目思路: 首先是乘法原理加法原理计数,对a [i]当做裁判的情况,记c[i] d[i] 分别表示前面和后面小于它的数的个数,ai当裁判方法数就是 c[i]*(n-i-1-d[i])+d[i]*(i-c[i])了
然后如果直接暴力统计ci di ,复杂度O(N*N) TLE; 本题的一个限制是a【i】两两不同, 那么他们可以作为下标,维护一个数组(实际写程序时没有) x[i], 那么顺次统计a[i]时 ,将x[ a[i] ] 置为1 , 那么c[i] 就是x[1] + x[2]+...+ x[a[i]-1] ; 可以用BIT 实现。 具体的BIT知识见 《入门经典》 p195 ;
注意的是,结果要用;long long 存。
代码:
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long inta;
#define N 100010
int lowbit(int x)
{
return x&-x;
}
int C[N+1];
int sum(int x)
{
int ret=0;
while(x>0)
{
ret+=C[x];
x-=lowbit(x);
}
return ret;
}
void add(int x,int d)
{
while(x<=N)
{
C[x]+=d;
x+=lowbit(x);
}
}
int main()
{
int T;
cin>>T;
while(T--)
{
memset(C,0,sizeof(C));
int n;
cin>>n;
int a[n],c[n],d[n];
memset(c,0,sizeof(c));
memset(d,0,sizeof(d));
memset(C,0,sizeof(C));
for(int i=0;i<n;i++)
{
cin>>a[i];
add(a[i],1);
c[i]=sum(a[i]-1);
}
memset(C,0,sizeof(C));
for(int i=n-1;i>=0;i--)
{
add(a[i],1);
d[i]=sum(a[i]-1);
}
inta ans=0;
for(int i=1;i<n-1;i++)
ans+=c[i]*(n-i-1-d[i])+d[i]*(i-c[i]);
cout<<ans<<endl;
}
}