题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=3221
思路 首先列出n比较小的一些,找到规律,指数就是fibonacci数列,也不难由函数递归的形式猜出。
然后如果n<=33 int 范围内是放得下的, 可以直接快速幂。
但是如果n很大,(f[45] 就要超过int了) 这样就得用欧拉定理了 ,是用a和m不互素的那种,但是不可能存得下那么多数,所以我们基于线性递推数列,模上一个数后必然出现周期这样的结论,猜想会在不超过数组范围内出现周期(事实上为什么一定会在1000000内出现还是没有证明)。
代码:
#include<iostream>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#define N 1000000
using namespace std;
typedef long long inta;
int fi[40];
int prime[N+5];
vector<int> primev;
int fi_mod[N+5];
void pre()
{
fi[0]=1;
fi[1]=1;
for(int i=2;i<40;i++)
{
fi[i]=fi[i-1]+fi[i-2];
}
prime[0]=1;
prime[1]=1;
for(int i=2;i<=1000;i++)
if(prime[i]==0)
for(int j=i*i;j<=N;j+=i)
prime[j]=1;
for(int i=2;i<N;i++)
if(prime[i]==0) primev.push_back(i);
}
inta quick_mod(inta a,inta b,inta m)
{
inta ans=1;
while(b)
{
if(b&1) ans=(ans*a)%m;
a=(a*a)%m;
b>>=1;
}
return ans;
}
inta fy(int m)
{
if(prime[m]==0) return m-1;
int p_size=primev.size();
inta ans=m;
for(int i=0;i<p_size;i++)
{
if(primev[i]>m) break;
if(m%primev[i]==0)
{
ans/=primev[i];
ans*=(primev[i]-1);
while(m%primev[i]==0) m/=primev[i];
}
}
return ans;
}
int main()
{
pre();
inta a,b,n,p;
int index=0;
int cas;
cin>>cas;
while(cin>>a>>b>>p>>n)
{
printf("Case #%d: ",++index);
if(n==1)
{
cout<<a%p<<endl;
}
else if(n==2)
{
cout<<b%p<<endl;
}
else if(n<=33)
{
inta aa=quick_mod(a,fi[n-3],p);
inta bb=quick_mod(b,fi[n-2],p);
cout<<aa*bb%p<<endl;
}
else
{
// 找到周期
int fyp=fy(p);
fi_mod[0]=1;
fi_mod[1]=1;
int i;
for(i=2;i<N;i++)
{
if(i>2&&fi_mod[i-1]==1&&fi_mod[i-2]==1) break;
fi_mod[i]=(fi_mod[i-1]+fi_mod[i-2])%fyp;
}
int circle=i-2;
inta aa=quick_mod(a,fi_mod[(n-3)%circle]+fyp,p);
inta bb=quick_mod(b,fi_mod[(n-2)%circle]+fyp,p);
cout<<(aa*bb)%p<<endl;
}
}
}
实际上,用矩阵乘法算fibonacci数列会好很多啊 不必去想它的周期是否存在。
稍作修改 增加矩阵的快速幂
代码:
#include<iostream>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#define N 1000000
using namespace std;
typedef long long inta;
int fi[40];
int prime[N+5];
vector<int> primev;
int fi_mod[N+5];
void pre()
{
fi[0]=1;
fi[1]=1;
for(int i=2;i<40;i++)
{
fi[i]=fi[i-1]+fi[i-2];
}
prime[0]=1;
prime[1]=1;
for(int i=2;i<=1000;i++)
if(prime[i]==0)
for(int j=i*i;j<=N;j+=i)
prime[j]=1;
for(int i=2;i<N;i++)
if(prime[i]==0) primev.push_back(i);
}
inta fy(int m)
{
if(prime[m]==0) return m-1;
int p_size=primev.size();
inta ans=m;
for(int i=0;i<p_size;i++)
{
if(primev[i]>m) break;
if(m%primev[i]==0)
{
ans/=primev[i];
ans*=(primev[i]-1);
while(m%primev[i]==0) m/=primev[i];
}
}
return ans;
}
inta quick_mod(inta a,inta b,inta m)
{
inta ans=1;
while(b)
{
if(b&1) ans=(ans*a)%m;
a=(a*a)%m;
b>>=1;
}
return ans;
}
struct matrix
{
inta m[2][2];
matrix()
{
m[0][0]=1;
m[1][1]=1;
m[1][0]=0;
m[0][1]=0;
};
};
matrix multi(matrix a,matrix b,int mod)
{
matrix ans;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
{
ans.m[i][j]=(a.m[i][0]*b.m[0][j]+a.m[i][1]*b.m[1][j])%mod;
}
return ans;
}
matrix quick_mod(matrix a,int b,int mod )
{
matrix ans;
while(b)
{
if(b&1) ans=multi(ans,a,mod);
a=multi(a,a,mod);
b>>=1;
}
return ans;
}
int main()
{
pre();
inta a,b,n,p;
int index=0;
int cas;
cin>>cas;
while(cin>>a>>b>>p>>n)
{
printf("Case #%d: ",++index);
if(n==1)
{
cout<<a%p<<endl;
}
else if(n==2)
{
cout<<b%p<<endl;
}
// else if(n<=33)
// {
//
// inta aa=quick_mod(a,fi[n-3],p);
// inta bb=quick_mod(b,fi[n-2],p);
// cout<<aa*bb%p<<endl;
// }
else
{
// 找到周期
int fyp=fy(p);
matrix A;
A.m[0][0]=1;
A.m[0][1]=1;
A.m[1][0]=1;
A.m[1][1]=0;
A=quick_mod(A,n-3,fyp);
int fn_2=A.m[0][0]+A.m[1][0];
int fn_3=A.m[0][1]+A.m[1][1];
inta aa=quick_mod(a,fn_3,p);
inta bb=quick_mod(b,fn_2,p);
cout<<aa*bb%p<<endl;
}
}
}