题目一:最小的K个数
解法一:基于partition,O(N)的算法,并且会修改输入的数组,不适用于海量数据,因为数据可能不能一次性读入内存;
public void swap(int[] data,int i,int j)
{
int temp=data[i];
data[i]=data[j];
data[j]=temp;
}
public int partition(int[] data,int low,int high)
{
int pivotkey=data[low];
while(low<high)
{
while(low<high&&data[high]>=pivotkey)
high--;
swap(data,low,high);
while(low<high&&data[low]<=pivotkey)
low++;
swap(data,low,high);
}
return low;//返回pivotley的下标,循环到最后仍然是low;
}
public void least_K(int[] data,int k)
{
if(data == null||k<=0||k>data.length)
return;
int low=0;
int high=data.length-1;
int pivot=partition(data,low,high);
while(pivot!=k-1)
{
if(pivot<k-1)
{
low=pivot+1;
pivot=partition(data,low,high);
}
else
{
high=pivot-1;
pivot=partition(data,low,high);
}
}
for(int i=0;i<k;i++)
{
System.out.println(""+data[i]);
}
}
import java.util.*;
public class Solution {
public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
if (input == null || input.length < k || k <= 0){
return new ArrayList();
}
int pivot = partition(input,0,input.length-1);
while(pivot != k-1){
if(pivot < k-1){
pivot = partition(input,pivot+1,input.length-1);
} else {
pivot = partition(input,0,pivot-1);
}
}
ArrayList<Integer> array = new ArrayList();
for (int i=0;i<k;i++){
array.add(input[i]);
}
return array;
}
private int partition(int[] data,int low , int high) {
int pivotkey = data[low];
while(low < high) {
while (low < high && data[high] >= pivotkey){
high--;
}
swap(data,low,high);
while (low < high && data[low] <= pivotkey){
low++;
}
swap(data,low,high);
}
return low;
}
private void swap(int[] data, int i, int j) {
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
解法二:O(N*logK)的算法,适合处理海量数据;
1.构建一个容积为K的最大堆:每次读入新的数据与容器中最大值比较,若大于堆顶元素,则抛弃该值;若小于堆顶元素,将该值赋值在堆顶,并进行percolateDown操作(时间复杂度为O(logK))。
2.利用红黑数:红黑树通过把结点分为红、黑两种颜色并根据一些规则确保树在一定程度上是平衡的,从而保证在树中查找、删除、插入操作都是O(logK)时间。
题目二:数组中次数超过一半的数字
解法一:利用partition找到数组中的中间值,即为次数超过一半的数字,前提是数组中有符合该条件的数字。
解法二:根据数组特点O(n)的算法:
遍历数组,如果遍历到的下一个数字与之前保存的数字相同,则count++,否则count--;当count为0时,在遍历下一个数字时,将count初始化为1(count的reset时间最关键)。
最后保存的数字一定是次数超过一半的数字(前提是符合条件的数字确实存在)。
public class Solution {
public int MoreThanHalfNum_Solution(int [] array) {
if(array == null){
return 0;
}
int temp = array[0];
int count = 1;
for (int i=1; i<array.length; i++){
if(count == 0){
temp = array[i];
count++;
}
else{
if(temp == array[i]){
count++;
}else{
count--;
}
}
}
int index = 0;
for(int j=0;j<array.length; j++){
if(array[j]==temp){
index++;
}
}
if(index*2 > array.length){
return temp;
}else{
return 0;
}
}
}