看了几十篇文章,整理了以下学习难度曲线相对平滑的AI入门路径:
- 快速学习编程(python)
2. 了解一些数学基础知识 (高数、概率论、线代) - 直接实战
- 理解概念 (热门书籍和理论课程)
- 进阶(读论文)
目前已有部分基础,但会跟着入门路线大致走一遍,两个月后(2022.12月初)回来更新实际的使用体验:每日打卡贴
一、PYTHON
建议学习周期:1-2D(1D=8H);亲测4个钟可以过一遍:
掌握入门知识即可:数据类型与对应操作、判断和循环语句、函数、面向对象、文件操作、Debug;进阶操作可在之后使用中逐渐掌握
资料: 只要半天!入门Python
二、数据分析
建议学习周期:2-3D;亲测8个钟可以过一遍:
Numpy、Pandas和Matplotlib三件套,无需系统学习,函数极多,了解有什么函数,具体有什么作用,以后需要才去找。
资料: [只要一天!入门Numpy&Pandas&matplotlib]
三、数学基础
建议学习周期:3D;我感受了一下,在【四、机器学习】里的视频讲了一些数学部分,所以跳过【三、数学基础】,之后再补
暂时不用学深(思考这个公式能解决什么问题,而不用纠结公式的推导与计算。比如全局最优解就是极值点,所以最优解一定在导数的某一个拐点处。),浅学一下,了解公式的作用;复习的时候也不需要记住,只需要作笔记,以后需要用到的时候回来查笔记
1.高数 (导数,梯度,泰勒公式)
2.线代 (向量、矩阵、运算、范数、特征向量和特征值)
3.概率论(快速过一遍,了解一些基本概念)
资料: 待更
四、机器学习
建议学习周期:20-35D
先从整体上了解这项技术的功能(实战),再深入理解技术的原理(理论)
实战: Jeremy Howard或菜菜的sklearn或黑马程序员3天快速入门python机器学习
(每个我只看了半个钟,我觉得【黑马程序员3天快速入门python机器学习】这个女老师讲的非常不错,很适合我的需求,基础差但想快速上手,实战与理论都有,但很多人对培训班的教程嗤之以鼻,所以看个人喜好挑选吧)
理论: 吴恩达机器学习或李宏毅老师,搭配用书《机器学习》(西瓜书)和《统计学习方法》(1,2,4,5,6,8,如果有不懂的,推荐刘建平老师的博客)
注:逻辑回归弄透,为了后续DL打基础
我的学习路径: 入门机器学习(有手就行系列)
五、深度学习
建议学习周期:20-35D
实战: Jeremy Howard、PyTorch深度学习快速入门教程
理论: 吴恩达深度学习 (暂时学到CNN即可)
先看神经网络部分。如果你之后想学图像方向,就接着看计算机视觉部分,然后对序列模型进行了解;如果准备往自然语言或推荐方向发展,则推荐先看计算机视觉部分,掌握CNN的基本常识后,再去学习序列模型全部内容
六、更多项目实战(待更)
七、其他
【白板推导系列】:机器学习与深度学习数学原理板书推导
【板书推导】:神经网络的原理(P19-P24为神经网络)
【数学基础资料】:《数学之美》
《图解深度学习》与《深度学习》:前者用图解的方式剖析了深度学习的原理,适合初学者;后者是深度学习领域奠基性的经典教程。
八、进阶阶段(待更)
经典以及热点文献
https://github.com/chehongshu/Artificial-intelligence-diamond-chinese
https://zhuanlan.zhihu.com/p/449014929
https://www.zhihu.com/question/21277368/answer/696222749