50天入门人工智能!

看了几十篇文章,整理了以下学习难度曲线相对平滑的AI入门路径:

  1. 快速学习编程(python)
    2. 了解一些数学基础知识 (高数、概率论、线代)
  2. 直接实战
  3. 理解概念 (热门书籍和理论课程)
  4. 进阶(读论文)

目前已有部分基础,但会跟着入门路线大致走一遍,两个月后(2022.12月初)回来更新实际的使用体验:每日打卡贴


一、PYTHON

建议学习周期:1-2D(1D=8H);亲测4个钟可以过一遍:

掌握入门知识即可:数据类型与对应操作、判断和循环语句、函数、面向对象、文件操作、Debug;进阶操作可在之后使用中逐渐掌握

资料: 只要半天!入门Python


二、数据分析

建议学习周期:2-3D;亲测8个钟可以过一遍:

Numpy、Pandas和Matplotlib三件套,无需系统学习,函数极多,了解有什么函数,具体有什么作用,以后需要才去找。

资料: [只要一天!入门Numpy&Pandas&matplotlib]


三、数学基础

建议学习周期:3D;我感受了一下,在【四、机器学习】里的视频讲了一些数学部分,所以跳过【三、数学基础】,之后再补

暂时不用学深(思考这个公式能解决什么问题,而不用纠结公式的推导与计算。比如全局最优解就是极值点,所以最优解一定在导数的某一个拐点处。),浅学一下,了解公式的作用;复习的时候也不需要记住,只需要作笔记,以后需要用到的时候回来查笔记

1.高数 (导数,梯度,泰勒公式)

2.线代 (向量、矩阵、运算、范数、特征向量和特征值)

3.概率论(快速过一遍,了解一些基本概念)

资料: 待更


四、机器学习

建议学习周期:20-35D

先从整体上了解这项技术的功能(实战),再深入理解技术的原理(理论)

实战: Jeremy Howard或菜菜的sklearn或黑马程序员3天快速入门python机器学习
(每个我只看了半个钟,我觉得【黑马程序员3天快速入门python机器学习】这个女老师讲的非常不错,很适合我的需求,基础差但想快速上手,实战与理论都有,但很多人对培训班的教程嗤之以鼻,所以看个人喜好挑选吧)

理论: 吴恩达机器学习或李宏毅老师,搭配用书《机器学习》(西瓜书)和《统计学习方法》(1,2,4,5,6,8,如果有不懂的,推荐刘建平老师的博客)

注:逻辑回归弄透,为了后续DL打基础

我的学习路径: 入门机器学习(有手就行系列)


五、深度学习

建议学习周期:20-35D

实战: Jeremy Howard、PyTorch深度学习快速入门教程

理论: 吴恩达深度学习 (暂时学到CNN即可)

先看神经网络部分。如果你之后想学图像方向,就接着看计算机视觉部分,然后对序列模型进行了解;如果准备往自然语言或推荐方向发展,则推荐先看计算机视觉部分,掌握CNN的基本常识后,再去学习序列模型全部内容


六、更多项目实战(待更)


七、其他

【白板推导系列】:机器学习与深度学习数学原理板书推导

【板书推导】:神经网络的原理(P19-P24为神经网络)

【数学基础资料】:《数学之美》

《图解深度学习》与《深度学习》:前者用图解的方式剖析了深度学习的原理,适合初学者;后者是深度学习领域奠基性的经典教程。


八、进阶阶段(待更)

经典以及热点文献


https://github.com/chehongshu/Artificial-intelligence-diamond-chinese
https://zhuanlan.zhihu.com/p/449014929
https://www.zhihu.com/question/21277368/answer/696222749

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值