一. 题目: Patching Array
Given a sorted positive integer array nums and an integer n, add/patch elements to the array such that any number in range [1, n]
inclusive can be formed by the sum of some elements in the array. Return the minimum number of patches required.
Example 1:
nums = [1, 3]
, n = 6
Return 1
.
Combinations of nums are [1], [3], [1,3]
, which form possible sums of: 1, 3, 4
.
Now if we add/patch 2
to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3]
.
Possible sums are 1, 2, 3, 4, 5, 6
, which now covers the range [1, 6]
.
So we only need 1
patch.
Example 2:
nums = [1, 5, 10]
, n = 20
Return 2
.
The two patches can be [2, 4]
.
Example 3:
nums = [1, 2, 2]
, n = 5
Return 0
.
二. 思路分析
题目大意:给定一个排序的正整数数组num和一个整数n,向数组添加/补丁元素,使得范围[1,n]中包含的任何数字都可以由数组中某些元素的和形成。返回所需的最小补丁数。思路分析:这是贪心算法的一个应用。题目求添加最少的数使得[1,n]中的每个数都可以由数组中元素和组成用maxNum表示已知的连续和为[1,maxNum)
- nums[i] <=maxNum,更新已知范围为:[1,maxNum + nums[i] )
- nums[i] > maxNum, 添加maxNum进数组才能达到最大的范围,所以已知范围更新为:[1,maxNum *2 )
代码如下:
class Solution { public: int minPatches(vector<int>& nums, int n) { int res = 0,i = 0; long long maxNum = 0; while (maxNum < n){ if (i<nums.size() && nums[i] <= maxNum + 1) maxNum += nums[i++]; else{ maxNum += maxNum + 1; res++; } } return res; } };