排序:
默认
按更新时间
按访问量

评分预测问题

        评分预测算法主要有以下几类:1. 平均值(1)全局平均值;(2)用户评分平均值;(3)物品评分平均值;(4)用户分类对物品分类的平均值。2.基于邻域的方法(1)基于用户的协同过滤;(2)基于物品的协同过滤。3. 隐语义模型和矩阵分解模型(1)传统的SVD分解;(2)Simon Fu...

2018-06-10 11:27:49

阅读数:17

评论数:0

推荐系统实例

        推荐引擎架构主要包括3部分:生成用户特征向量、特征-物品相关推荐、过滤与排名模块。1. 生成用户特征向量        一个特征向量由特征以及特征的权重组成,在利用用户行为计算特征向量时需要考虑以下因素。(1)用户行为的种类:一般用户付出的代价越大的行为,其权重越高;(2)用户行为...

2018-06-09 21:48:01

阅读数:23

评论数:0

利用社交网络数据

        基于社交网络的推荐可以很好模拟现实社会,因此本文简单介绍下如何利用社交网络数据进行个性化推荐。一般获取社交网络数据的途径有电子邮件、用户注册信息、用户的位置数据、论坛和讨论组、即时聊天工具和社交网站(又分为以社会身份为主的社交图谱和以兴趣为主的兴趣图谱)。        社交网络数...

2018-06-09 15:15:34

阅读数:35

评论数:0

利用上下文信息

        在推荐系统中,上下文信息非常重要,它使得推荐系统能够利用上下文信息(时间、地点、行为等)来更好为用户推荐。本节主要介绍如何利用时间上下文信息来建模。1. 简单介绍        时间是一种重要的上下文信息,对用户兴趣有着深入而广泛的影响。一般认为,时间信息对用户兴趣的影响表现在以下...

2018-06-08 17:01:15

阅读数:17

评论数:0

利用用户标签数据

        本篇文章主要介绍基于UGC(User Generated Content)标签的推荐,主要包括用户如何打标签和如何基于用户标签进行推荐两部分。1. 给用户推荐标签        出于“方便用户输入标签”和“提高标签质量”的目的,一般推荐系统会在用户打标签时给用户推荐相应标签。比较简...

2018-06-06 17:08:43

阅读数:24

评论数:0

推荐系统冷启动问题

1.冷启动问题简介用户冷启动:主要是解决如何给新用户做个性化推荐的问题;物品冷启动:主要解决如何将新的物品推荐给可能对他感兴趣的用户这一问题;系统冷启动:主要解决如何在一个新开发的网站上设计个性化推荐系统,从而在网站刚发布时就让用户体验到个性化推荐服务这一问题。针对这三种不同的冷启动问题,可以参考...

2018-06-04 17:54:03

阅读数:27

评论数:0

利用用户行为数据进行推荐

        基于用户行为数据的推荐系统已经非常流行了,今天我们就来介绍三种基本的推荐方法:基于邻域的算法、隐语义模型和基于图的模型。1. 用户行为数据        用户行为数据在网站上最简单的存在形式就是日志。用户行为在个性化推荐系统中一般分为两种——显性反馈行为和隐性反馈行为。显性反馈行为...

2018-05-29 18:46:39

阅读数:39

评论数:0

推荐系统之评测指标

前言:在接下来的一段时间,我将学习《推荐系统实践》这本书,打算把每天学习的内容进行总结写成博客,今天是第一篇,主要内容是关于推荐系统的一些常见指标。1. 推荐系统实验方法        在推荐系统中,主要有三种评测推荐效果的实验方法:离线实验、用户调查和在线实验。离线实验主要通过从日志中获取用户行...

2018-05-28 21:48:41

阅读数:60

评论数:0

简述hadoop相关知识点

写在前面:最近花了点时间了解了hadoop的运行机制,于是在此做个笔记,由于水平有限,有错请指出,谢谢!1. 安装hadoop对于工程类的东西,本人小白一个,从安装虚拟机到配置jdk、安装hadoop前后花了三四天的时间,在踩过无数坑之后,终于把wordcount 小例子正确执行,这里对于第一次搭...

2018-05-25 11:40:59

阅读数:32

评论数:0

python 深入理解 赋值、引用、拷贝、作用域

python 深入理解 赋值、引用、拷贝、作用域

2018-05-15 20:33:08

阅读数:11

评论数:0

python generator

Python中Generators教程

2018-05-15 11:46:31

阅读数:9

评论数:0

Numpy学习——数组填充np.pad()函数的应用

在卷积神经网络中,为了避免因为卷积运算导致输出图像缩小和图像边缘信息丢失,常常采用图像边缘填充技术,即在图像四周边缘填充0,使得卷积运算后图像大小不会缩小,同时也不会丢失边缘和角落的信息。在Python的numpy库中,常常采用numpy.pad()进行填充操作,具体分析如下:1)语法结构pad(...

2018-04-15 18:11:55

阅读数:29

评论数:0

激活函数,怎样才能懂你?

1.为什么要用激活函数是为了引入非线性因素,具体请见 神经网络激励函数的作用是什么?有没有形象的解释? - lee philip的回答 - 知乎2.常见激活函数及其优缺点(同学总结的,很不错)激活函数3.激活函数一般具有哪些性质?(具体请参考https://www.zhihu.com/questi...

2018-04-07 18:53:43

阅读数:17

评论数:0

关于MySQL的若干问题

1. mysql安装文件及教程2. 无法启动MYSQL服务”1067 进程意外终止”解决的方法——汇总及终极方法3. mysql ERROR 1045 (28000): Access denied for user解决方法

2018-04-07 09:56:22

阅读数:48

评论数:0

搭建Java开发相关环境

1. 安装JDKJDK安装与环境变量配置2.安装myeclipseWindows上MyEclipse2017 CI7 安装、破解以及配置

2018-04-06 21:18:50

阅读数:13

评论数:0

面试小结(持续更)

前言:天将降大任于斯人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。1.作业帮(算法/数据挖掘实习生)(1)从海量数据中找出前1000个最大数解决方案:先选出1000个数来建立一个小根堆(时间复杂度为o(m),m为堆的大小),然后遍历剩下的元素,如果当前...

2018-03-18 12:19:32

阅读数:45

评论数:0

简单理解基数排序

        基数排序主要有两个步骤:分配和收集。现假设有一个十进制数组{1,56,2,36,18,60,235,17},那么我们就需要把数据分配到十个“桶”中去,首先我们根据数字的个位上的数进行分配,分配结果如下:"0"号桶:60"1&am...

2018-03-12 20:19:50

阅读数:26

评论数:0

排序算法小结

        排序算法在面试中是必过的一道关,因此今天我们就来简单总结一下各种排序算法的思想及代码实现(C/C++版)。为了讨论各算法的时间复杂度和稳定性,我们以同一实例进行分析:5 3 6 5 2 1 5(递增排序)。1. 交换排序1.1 冒泡排序冒泡排序的基本思想是:从第一个元素开始与其下一...

2018-03-08 19:28:37

阅读数:59

评论数:0

朴素贝叶斯面试总结

1. 朴素贝叶斯与LR的区别?简单来说:朴素贝叶斯是生成模型,根据已有样本进行贝叶斯估计学习出先验概率P(Y)和条件概率P(X|Y),进而求出联合分布概率P(XY),最后利用贝叶斯定理求解P(Y|X), 而LR是判别模型,根据极大化对数似然函数直接求出条件概率P(Y|X);朴素贝叶斯是基于很强的条...

2018-03-06 22:51:12

阅读数:294

评论数:0

深入了解LR

深入了解LR

2018-03-05 17:57:53

阅读数:50

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭