SQL优化从 30248.271s 到 0.001s

文章介绍了如何通过创建和调整索引来优化SQL查询性能,从30多秒降低到毫秒级。首先在SC表的c_id和score上建立索引,然后尝试连接查询,通过调整查询顺序和创建s_id索引来进一步优化。最后,通过建立c_id和score的联合索引,将查询时间稳定在可接受范围内。随着数据量增加,需平衡索引数量和磁盘读取成本。
摘要由CSDN通过智能技术生成

用的数据库是mysql5.6

课程表

create table Course(
c_id int PRIMARY KEY,
name varchar(10)
)
数据100条

学生表

create table Student(
id int PRIMARY KEY,
name varchar(10)
)
数据70000条

学生成绩表

CREATE table SC(
sc_id int PRIMARY KEY,
s_id int,
c_id int,
score int
)
数据70w条


查询目的:
查找语文考100分的考生。

查询语句:
select s.* from Student s
where s.s_id in (  
    select s_id   
    from SC sc   
    where sc.c_id = 0 and sc.score = 100 )
执行时间:30248.271s

解决办法:

(1)来查看下查询计划:

EXPLAIN
select s.* from Student s
where s.s_id in (
select s_id
from SC sc
where sc.c_id = 0 and sc.score = 100 )
发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。

(2)先给sc表的c_id和score建个索引。

CREATE index sc_c_id_index on SC(c_id);
CREATE index sc_score_index on SC(score);
再次执行上述查询语句,时间为: 1.054s

(3)但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划

查看优化后的语句:
在命令窗口执行:
mysgl> show warnings ;

分析优化后语句:
Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,
mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*8次

(4)那么改用连接查询呢?

这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index 。
SELECT s.* from
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=0 and sc.score=100
执行时间是:0.057s

(5)CREATE index sc_s_id_index on SC(s_id);

在执行连接查询
时间: 1.076s, 竟然时间还变长了,什么原因?查看执行计划:
这里是先做的where条件过滤,再做连表,执行计划还不是固定的
[正常情况下是先join再进行where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where]

(6)过滤是明智方案,现在为了排除mysql的查询优化,我自己写一条优化后的sql 。

SELECT   
    s.*
FROM   
    (     
        SELECT      
            *     
        FROM       
            SC sc   
        WHERE       
            sc.c_id = 0    
        AND sc.score = 100  
    ) t
INNER JOIN Student s ON t.s_id = s.s_id
即先执行sc表的过滤,再进行表连接,执行时间为:0.054s , 和之前没有建s_id索引的时间差不多

查看执行计划:
先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引。
CREATE index sc_c_id_index on SC(c_id);
CREATE index sc_score_index on SC(score);
执行时间为:0.001s,这个时间相当靠谱,快了50倍

(7)那么再来执行下sql

SELECT s.* from
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=0 and sc.score=100
执行时间0.001s

(8)调整内容为SC表的数据增长到300W,学生分数更为离散

SELECT s.* from
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=81 and sc.score=84
执行时间:0.061s,这个时间稍微慢了点。
执行计划:
这里用到了intersect并集操作,即两个索引同时检索的结果再求并集,再看字段score和c_id的区分度
单从一个字段看,区分度都不是很大,从SC表检索,c_id=81检索的结果是70001,score=84的结果是39425
而c_id=81 and score=84 的结果是897,即这两个字段联合起来的区分度是比较高的,因此建立联合索引查询效率

业务情况建立多列的联合索引是必要的,那么我们来试试吧。
alter table SC drop index sc_c_id_index;
alter table SC drop index sc_score_index;
create index sc_c_id_score_index on SC(c_id,score);
执行上述查询语句,消耗时间为:0.007s,这个速度还是可以接收的
该语句的优化暂时告一段落。

注意:

该表的数据是300w,以后会更多,就索引存储而言,都是不小的数目,
随着数据量的增加,索引就不能全部加载到内存,而是要从磁盘去读取,
这样索引的个数越多,读磁盘的开销就越大,因此根据具体情况使用。

更多内容:

http://www.gxcode.top/code
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

java之书

会持续更新实用好的文章谢谢关注

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值