稳定学习
稳定学习的目标如下,模型应用到不同的数据分布下的时候,都有着可靠的性能且性能间的方差较小
给出因果关系的定义,假设存在下图的因果图,在控制住除变量 T 之外所有其它的变量 X不变的条件下,对 T 施加一定的影响,如果 Y 会随着 T 的变化而变化,则称 T 对 Y 有因果效应
在计算过程中,论文使用了直接混淆变量平衡(directly confounder balancing)的方法,以上图为例,将数据划分为 T=0 和 T=1 的两组后,对两组数据的样本进行加权,使得这两组数据加权后的 X 分布一致,当 T 和 X 独立之后,度量 T 与 Y 之间的关联性等价于计算 T 与 Y 之间的因果效应。在实际的机器学习问题中,度量的是一组输入变量,稳定学习试图学习一组全局样本权重,通过样本加权的方式使所有的输入变量之间都相互独立,从而利用现有的基于关联的模型实现基于因果的预测,之后有一系列论文从离散/连续、线性/非线性等不同角度解决变量间去相关的问题。
Causally Regularized Learning with Agnostic Data Selection Bias. ACM Multimedia, 2018.
为了简化起见,假设变量都是离散的二元变量。对于输入样本的某一维特征,将其作为干预变量T,然后将其余的特征作为需要控制的 X,计算加权后实验组和对照组的样本矩的差的二范数,将各个二范数加起来,就得到所需要的正则项。其中 W ∈ R n × 1 W\in R^{n \times1} W∈Rn×1, X − j X_{-j} X−j这一步是将输入X的第j列置为0, I j ∈ R n × 1 I_j\in R^{n \times1} Ij∈Rn×1是将第j个特征为1的样本设为1,否则设为0。因此上式的前半部分计算第j个特征为1时对应样本其他变量的W加权平均值,后半部分计算第j个特征为0时对应样本其他变量的W加权平均值。
Stable Prediction with Model Misspecification and Agnostic Distribution Shift. AAAI, 2020.
这篇论文是把稳定学习推广到了连续变量情况下
假设两个变量是不相关的,则它们乘积的期望等于期望的乘积,样本加权矩阵 W ∈ R n × 1 W\in R^{n \times1} W∈Rn×1满足下式
假设
,则可将去相关loss改写成
Deep Stable Learning for Out-Of-Distribution Generalization.CVPR,2021
之前的去相关方法只能去除线性相关,为了去除非线性相关,论文使用随机傅立叶特征将原始特征映射到高维空间,再消除新特征间的线性相关