Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion


🎉进入图谱洞见专栏 | 🚀查看更多专栏内容


研究问题

将图结构编码与文本编码相结合,综合利用结构和文本信息

背景动机

  • 现有的基于结构的传统编码模型无法预测新出现的实体
  • 现有的基于文本编码的模型通过对整个三元组进行分类来执行链路预测,开销过大,且未利用空间信息,难以解决实体的多义性问题
  • 为了说明两种方法各自的优势,作者画了个非常有意思的图来说明KGBERT在精确预测以及运行时间上的劣势
    在这里插入图片描述

模型方法

使用孪生模型对文本进行非对称编码,将从表示学习和空间结构两个角度得出分数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值