文章目录 研究问题 背景动机 模型方法 孪生模型 文本编码器 得分模块 确定性表示学习 空间结构学习 与RotatE模型相结合 实验结果 🎉进入图谱洞见专栏 | 🚀查看更多专栏内容 研究问题 将图结构编码与文本编码相结合,综合利用结构和文本信息 背景动机 现有的基于结构的传统编码模型无法预测新出现的实体 现有的基于文本编码的模型通过对整个三元组进行分类来执行链路预测,开销过大,且未利用空间信息,难以解决实体的多义性问题 为了说明两种方法各自的优势,作者画了个非常有意思的图来说明KGBERT在精确预测以及运行时间上的劣势 模型方法 使用孪生模型对文本进行非对称编码,将从表示学习和空间结构两个角度得出分数