第八章 聚类

8 篇文章 0 订阅 ¥299.90 ¥399.90
这篇博客详细介绍了聚类的基本概念,包括相似度度量(欧氏距离、曼哈顿距离、闵可夫斯基距离)以及聚类算法的划分,如K均值、密度聚类(DBSCAN)和凝聚层次聚类。还讨论了聚类的评价指标——轮廓系数,帮助读者理解如何评估聚类效果。
摘要由CSDN通过智能技术生成

一. 概述

聚类(cluster)与分类(class)问题不同,聚类是属于无监督学习模型,而分类属于有监督学习。聚类使用一些算法把样本分为N个群落,群落内部相似度较高,群落之间相似度较低。

将相似的样本划分为同一个类别

在机器学习中,通常采用“距离”来度量样本间的相似度,距离越小,相似度越高;距离越大,相似度越低.

1. 相似度度量方式

1.1 欧氏距离

相似度使用欧氏距离来进行度量. 坐标轴上两点 x 1 , x 2 x_1, x_2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颜大哦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值