集训数据竞赛打卡——day2

#coding:utf-8
#导入warnings包,利用过滤器来实现忽略警告语句。
import warnings
warnings.filterwarnings('ignore')

# GBDT
from sklearn.ensemble import GradientBoostingRegressor
# XGBoost
import xgboost as xgb
# LightGBM
import lightgbm as lgb

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import KFold
from sklearn.metrics import r2_score
from sklearn.preprocessing import LabelEncoder 
import pickle
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
from sklearn.preprocessing import StandardScaler 
ss = StandardScaler() 
from sklearn.model_selection import StratifiedKFold
from sklearn.linear_model import ElasticNet, Lasso,  BayesianRidge, LassoLarsIC,LinearRegression,LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import IsolationForest

 

#载入数据
data_train = pd.read_csv('./train_data.csv')
data_train['Type'] = 'Train'
data_test = pd.read_csv('./test_a.csv')
data_test['Type'] = 'Test'
data_all = pd.concat([data_train, data_test], ignore_index=True)
def preprocessingData(data):
    # 填充缺失值
    data['rentType'][data['rentType'] == '--'] = '未知方式'
    
    # 转换object类型数据
    columns = ['rentType','communityName','houseType', 'houseFloor', 'houseToward', 'houseDecoration',  'region', 'plate']
    
    for feature in columns:
        data[feature] = LabelEncoder().fit_transform(data[feature])

    # 将buildYear列转换为整型数据
    buildYearmean = pd.DataFrame(data[data['buildYear'] != '暂无信息']['buildYear'].mode())
    data.loc[data[data['buildYear'] == '暂无信息'].index, 'buildYear'] = buildYearmean.iloc[0, 0]
    data['buildYear'] = data['buildYear'].astype('int')

    # 处理pv和uv的空值
    data['pv'].fillna(data['pv'].mean(), inplace=True)
    data['uv'].fillna(data['uv'].mean(), inplace=True)
    data['pv'] = data['pv'].astype('int')
    data['uv'] = data['uv'].astype('int')

    # 分割交易时间
    def month(x):
        month = int(x.split('/')[1])
        return month
    def day(x):
        day = int(x.split('/')[2])
        return day
    data['month'] = data['tradeTime'].apply(lambda x: month(x))
    data['day'] = data['tradeTime'].apply(lambda x: day(x))
    
    # 去掉部分特征
    data.drop('city', axis=1, inplace=True)
    data.drop('tradeTime', axis=1, inplace=True)
    data.drop('ID', axis=1, inplace=True)
    return data

data_train = preprocessingData(data_train)
# clean data
def IF_drop(train):
    IForest = IsolationForest(contamination=0.01)
    IForest.fit(train["tradeMoney"].values.reshape(-1,1))
    y_pred = IForest.predict(train["tradeMoney"].values.reshape(-1,1))
    drop_index = train.loc[y_pred==-1].index
    print(drop_index)
    train.drop(drop_index,inplace=True)
    return train

data_train = IF_drop(data_train)
def dropData(train):
    # 丢弃部分异常值
    train = train[train.area <= 200]
    train = train[(train.tradeMoney <=16000) & (train.tradeMoney >=700)]
    train.drop(train[(train['totalFloor'] == 0)].index, inplace=True)
    return train  
#数据集异常值处理
data_train = dropData(data_train)
# 处理异常值后再次查看面积和租金分布图
plt.figure(figsize=(15,5))
sns.boxplot(data_train.area)
plt.show()
plt.figure(figsize=(15,5))
sns.boxplot(data_train.tradeMoney),
plt.show()
def cleanData(data):
    data.drop(data[(data['region']=='RG00001') & (data['tradeMoney']<1000)&(data['area']>50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['tradeMoney']>25000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['area']>250)&(data['tradeMoney']<20000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['area']>400)&(data['tradeMoney']>50000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['area']>100)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00002') & (data['area']<100)&(data['tradeMoney']>60000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['area']<300)&(data['tradeMoney']>30000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['tradeMoney']<500)&(data['area']<50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['tradeMoney']<1500)&(data['area']>100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['tradeMoney']<2000)&(data['area']>300)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['tradeMoney']>5000)&(data['area']<20)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['area']>600)&(data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00004') & (data['tradeMoney']<1000)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['tradeMoney']<200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']<2000)&(data['area']>180)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']>50000)&(data['area']<200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['area']>200)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00007') & (data['area']>100)&(data['tradeMoney']<2500)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['area']>200)&(data['tradeMoney']>25000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['area']>400)&(data['tradeMoney']<15000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['tradeMoney']<3000)&(data['area']>200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['tradeMoney']>7000)&(data['area']<75)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['tradeMoney']>12500)&(data['area']<100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00004') & (data['area']>400)&(data['tradeMoney']>20000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008') & (data['tradeMoney']<2000)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00009') & (data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00009') & (data['area']>300)].index,inplace=True)
    data.drop(data[(data['region']=='RG00009') & (data['area']>100)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00011') & (data['tradeMoney']<10000)&(data['area']>390)].index,inplace=True)
    data.drop(data[(data['region']=='RG00012') & (data['area']>120)&(data['tradeMoney']<5000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00013') & (data['area']<100)&(data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00013') & (data['area']>400)&(data['tradeMoney']>50000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00013') & (data['area']>80)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['area']>300)&(data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']<1300)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']<8000)&(data['area']>200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']<1000)&(data['area']>20)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']>25000)&(data['area']>200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']<20000)&(data['area']>250)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']>30000)&(data['area']<100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']<50000)&(data['area']>600)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']>50000)&(data['area']>350)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['tradeMoney']>4000)&(data['area']<100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['tradeMoney']<600)&(data['area']>100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['area']>165)].index,inplace=True)
    data.drop(data[(data['region']=='RG00012') & (data['tradeMoney']<800)&(data['area']<30)].index,inplace=True)
    data.drop(data[(data['region']=='RG00007') & (data['tradeMoney']<1100)&(data['area']>50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00004') & (data['tradeMoney']>8000)&(data['area']<80)].index,inplace=True)
    data.loc[(data['region']=='RG00002')&(data['area']>50)&(data['rentType']=='合租'),'rentType']='整租'
    data.loc[(data['region']=='RG00014')&(data['rentType']=='合租')&(data['area']>60),'rentType']='整租'
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']>15000)&(data['area']<110)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']>20000)&(data['area']>110)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']<1500)&(data['area']<50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['rentType']=='合租')&(data['area']>50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00015') ].index,inplace=True)
    data.reset_index(drop=True, inplace=True)
    return data

data_train = cleanData(data_train)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值