B
首先确定被 1*3 铺满的 n 的大小,也就是 t = m i n ( n / 3 , b / 2 ) min(n/3,b/2) min(n/3,b/2),然后 n − 3 ∗ t n - 3*t n−3∗t 与 a 比较大小即可。
#include<bits/stdc++.h>
#define int long long
using namespace std;
void solve()
{
int a,b,n; cin>>a>>b>>n;
b/=2;
int t=min(b,n/3);
if(a>=n-t*3) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
return ;
}
signed main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int T; cin>>T;
while(T--) solve();
return 0;
}
C
两数的异或小于等于0,一个为正数或0,一个为负数。
对于第一条性质,负数之间一定可以互相抵消,所以先消正数。
由于相同的两个数的异或为0,所以先统计相同的正数的个数,由于负数可以用来消正数,也可以自己消,所以相同的负数最好都用来消正数。
采用贪心,首先让相同的正数互相消,然后留下单个的正数用负数来消。
另外,由于异或和加法的交换律,并不需要考虑 i<j
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e5+3;
int a[maxn];
void solve()
{
int n; cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
int cnt1=0,cnt2=0,ans; // 负数、正数的个数
map<int,int>mp;
for(int i=1;i<=n;i++)
{
if(a[i]<0) cnt1++;
else mp[a[i]]++;
}
for(auto &t:mp)
cnt2+=t.second%2; //消除相同的正数,记录剩下的正数数量
//负数多,用负数消正数,剩下的负数互相抵消
if(cnt1>=cnt2) ans=(cnt1-cnt2)%2;
else ans=cnt2-cnt1; //正数多,剩下的正数没法消了
cout<<ans<<endl;
return ;
}
signed main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int T; T=1;
while(T--) solve();
return 0;
}
D
采用优先队列,循环到队列为空即可。
#include<bits/stdc++.h>
using namespace std;
void solve()
{
string s;
int n; cin>>n;
priority_queue<string>q;
for(int i=1;i<=n;i++)
{
cin>>s;
q.push(s);
}
while(!q.empty())
{
string temp=q.top();
q.pop();
cout<<temp.front();
if(temp.size()!=1) q.push(temp.substr(1));
}
return ;
}
int main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int T; T=1;
while(T--) solve();
return 0;
}