矩阵中的最长递增路径

给定一个整数矩阵,找到最长递增路径的长度。每个单元格可以向上、下、左、右四个方向移动,不能走对角线且不能越界。问题转化为寻找有向图中的最长路径,可以通过深度优先遍历或拓扑排序来解决。
摘要由CSDN通过智能技术生成

一、题目描述

给定一个整数矩阵,找出最长递增路径的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。
在这里插入图片描述

二、理解题意

问题建模

  • 将矩阵中每个元素当成一个节点,连接上下左右相邻的元素,我们可以得到一个图
  • 由于题目要求寻找最长递增路径,我们可以只保留从小元素指向大元素的有向边
  • 那么该问题也就变成了寻找有向图中的最长路径
  • 由于该图中的邻接关系是固定的,我们并不用显式构建邻接表或邻接矩阵,直接使用该矩阵即可

在这里插入图片描述

三、解法一:深度优先遍历法

在这里插入图片描述
在这里插入图片描述

public int[][] dirs = {
   {
   -1, 0}, {
   1, 0}, {
   0, -1}, {
   0, 1}};
public int rows, columns;

public int dfs(int[][] matrix, int row, int column) {
   
	int result = 1;
	
	for (int[] dir : dirs) {
   
		int newRow = row + dir[0], newColumn = column + dir[1];
		//如果邻居元素存在,且比当前元素大
		if (newRow >= 0 && newRow < rows && newColumn >= 0 &&newColumn < columns && matrix[newRow][newColumn] > matrix[row][column])
			result = Math.max(result, dfs(matrix, newRow, newColumn) + 1);
	}
	return result;
}

public int longestIncreasingPath(int[][] matrix) {
   
	if (matrix.length == 0 || matrix[0].length == 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值