一 概述
1.本文研究的问题为:
在有限的标注工作中,哪些样例应当被标注,以此可以实现最好的识别效果。
2.解决方法:
设计了
一种结合了FCN和主动学习的深度主动学习框架
,通过在最有效的注释区域提出有判断力的建议,来显著减少注释工作量。
文章使用FCN产生的不确定性和相似性信息,组成最大集覆盖问题的广义版本,来决定最具代表性和不确定性的区域来注释。
选择
主动学习,是由于主动学习允许学习模型选择训练集,
去主动学习那些比较[
难的][信息量大的]
样本(hard mining)。关键点是每次都挑当前分类器分类效果不理想的那些样本(hard sample)给它训练,假设是训练这部分hard sample 对于提升分类器效果最有效而快速。但是主动学习需要预先训练好的

本文提出了一种名为Suggestive Annotation的深度主动学习框架,专注于解决生物医学图像分割问题。框架通过初始化过程,利用FCN(全卷积网络)并结合不确定性和相似性估计来逐步提高模型的性能,应对标注数据有限的挑战。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



