[Java·算法·困难]LeetCode84. 柱状图中最大的矩形

文章介绍了一种使用单调栈解决求解柱状图中能构成的最大矩形面积的问题。通过维护一个单调递增的栈,遍历柱子高度,动态计算以栈中元素为高的矩形面积,从而找到最大面积。这种方法适用于处理高度变化的柱状数据,寻找潜在的最大覆盖区域。
摘要由CSDN通过智能技术生成

每天一题,防止痴呆

👉️ 力扣原文

题目

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

示例

输入:heights = [2,1,5,6,2,3]
输出:10
解释:最大的矩形为图中红色区域,面积为 10
输入: heights = [2,4]
输出: 4

分析思路1

维护一个单调递增的栈,每次遍历到一个新的元素时,将栈顶的元素依次弹出,并计算以这些元素为高的矩形的面积。在计算面积时,根据单调栈的性质,我们知道这些元素之后的第一个比它们小的元素就是它们的左边界,而当前遍历到的元素就是它们的右边界。因此,它们所能够覆盖的最大面积就是它们的高度乘以它们的宽度。在计算矩形面积时,我们需要特别注意栈是否为空的情况。最后,我们需要将所有剩余的元素依次弹出,并计算以它们为高的矩形的面积。

栈顶元素代表的柱子的高度比栈底元素代表的柱子的高度小。当遍历到一个新的柱子时,如果这个柱子的高度大于等于栈顶元素的高度,那么将这个柱子的下标压入栈中;否则,将栈顶元素依次弹出,直到栈顶元素的高度小于当前柱子的高度为止。弹出元素时,我们可以计算以这些元素为高的矩形的面积,而宽度就是当前柱子的下标减去栈顶元素的下标再减去 1。

题解1

class Solution {
    public int largestRectangleArea(int[] heights) {
        Stack<Integer> stack = new Stack<Integer>();
        int maxArea = 0;
        int i = 0;
        while (i < heights.length) {
            if (stack.isEmpty() || heights[i] >= heights[stack.peek()]) {
                stack.push(i++);
            } else {
                int top = stack.pop();
                int area = heights[top] * (stack.isEmpty() ? i : i - stack.peek() - 1);
                maxArea = Math.max(maxArea, area);
            }
        }
        while (!stack.isEmpty()) {
            int top = stack.pop();
            int area = heights[top] * (stack.isEmpty() ? i : i - stack.peek() - 1);
            maxArea = Math.max(maxArea, area);
        }
        return maxArea;
    }
}

执行结果
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值