👉️ 力扣原文
题目
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
示例
输入:heights = [2,1,5,6,2,3]
输出:10
解释:最大的矩形为图中红色区域,面积为 10
输入: heights = [2,4]
输出: 4
分析思路1
维护一个单调递增的栈,每次遍历到一个新的元素时,将栈顶的元素依次弹出,并计算以这些元素为高的矩形的面积。在计算面积时,根据单调栈的性质,我们知道这些元素之后的第一个比它们小的元素就是它们的左边界,而当前遍历到的元素就是它们的右边界。因此,它们所能够覆盖的最大面积就是它们的高度乘以它们的宽度。在计算矩形面积时,我们需要特别注意栈是否为空的情况。最后,我们需要将所有剩余的元素依次弹出,并计算以它们为高的矩形的面积。
栈顶元素代表的柱子的高度比栈底元素代表的柱子的高度小。当遍历到一个新的柱子时,如果这个柱子的高度大于等于栈顶元素的高度,那么将这个柱子的下标压入栈中;否则,将栈顶元素依次弹出,直到栈顶元素的高度小于当前柱子的高度为止。弹出元素时,我们可以计算以这些元素为高的矩形的面积,而宽度就是当前柱子的下标减去栈顶元素的下标再减去 1。
题解1
class Solution {
public int largestRectangleArea(int[] heights) {
Stack<Integer> stack = new Stack<Integer>();
int maxArea = 0;
int i = 0;
while (i < heights.length) {
if (stack.isEmpty() || heights[i] >= heights[stack.peek()]) {
stack.push(i++);
} else {
int top = stack.pop();
int area = heights[top] * (stack.isEmpty() ? i : i - stack.peek() - 1);
maxArea = Math.max(maxArea, area);
}
}
while (!stack.isEmpty()) {
int top = stack.pop();
int area = heights[top] * (stack.isEmpty() ? i : i - stack.peek() - 1);
maxArea = Math.max(maxArea, area);
}
return maxArea;
}
}
执行结果