代码随想录二刷 |二叉树 |222.完全二叉树的节点个数

题目描述

222.完全二叉树的节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:
在这里插入图片描述
输入:root = [1,2,3,4,5,6]
输出:6

示例 2:

输入:root = []
输出:0

示例 3:

输入:root = [1]
输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 104]
  • 0 <= Node.val <= 5 * 104
  • 题目数据保证输入的树是 完全二叉树

进阶:遍历树来统计节点是一种时间复杂度为 O(n) 的简单解决方案。你可以设计一个更快的算法吗?

解题思路

有普通二叉树和完全二叉树两个思路。

普通二叉树

递归法

递归三部曲:

  1. 确定递归函数的参数和返回值
    参数是传入树的根节点,返回节点的数目,所以为int
    int getNodesNum (TreeNode* cur)
    
  2. 确定递归的终止条件
    如果节点为空,就返回0,表示节点数目为0
    if (cur == NULL) return 0;
    
  3. 确定单层递归的逻辑
    先求左子树的节点数目,再求右子树的节点数目,最后取总和,再+1。+1的原因是因为要算上当前中间节点。
    int leftNum = getNodesNum(cur->left);
    int rightNum = getNodesNum(cur->right);
    int treeNum = leftnum + rightNum + 1;
    return treeNum;
    

迭代法

常规的层序遍历,中间加一个变量用来保存节点数目即可

完全二叉树

完全二叉树有两种,一种是它是一个满二叉树,另一种则是一个子树为满二叉树,另一个最后一层的节点没有填满。

对于第一种,可以直接用公式2^树的深度 - 1来计算。

对于第二种,假设左子树为满二叉树,那么右子树的最后一层节点没有填满,我们递归左右孩子,递归到一定深度就会发现满二叉树和没有填满节点的二叉树,满二叉树按照公式求节点个数即可,没有填满节点的二叉树正常递归求节点数目即可。

接下来就需要考虑如何找到满二叉树和没有填满节点的二叉树,如果递归向左递归的深度 = 递归向右递归的深度,那么这个树就是一个满二叉树;如果递归向左遍历的深度 != 递归向右遍历的深度,则说明不是满二叉树。

那么在递归三部曲第二步终止条件上应该这样写:

if (root == nullptr) return 0;
// 根据左深度和右深度是否相同来判断子树是不是满二叉树
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0;
while (left) { // 求左子树的深度
	left = left->left;
	leftDepth++;
}
while (right) {
	right = right->right;
	rightDepth++;	
}
if (leftDepth == rightDepth) {
	// (2 << 1)相当于2^2,所以 (2 << leftDepth) - 1 的意思是返回满足满二叉树的子树的节点数量
	return (2 << leftDepth) - 1;	
}

递归三部曲的第三部:

int leftTreeNum = countNodes(root->left);
int rightTreeNum = countNodes(root->right);
int result = leftTreeNum + rightTreeNum + 1;
return result;

代码实现

普通二叉树递归法

class Solution {
public:
	int getNodesNum(TreeNode* cur) {
		if (cur == NULL) return 0;
		int leftNum = getNodesNum(cur->left);
		int rightNum = getNodesNum(cur->right);
		int treeNum = leftNum + rightNum + 1;
		return treeNum;
	}
public:
    int countNodes(TreeNode* root) {
		return getNodesNum(root);
    }
};

普通二叉树迭代法

class Solution {
public:
    int countNodes(TreeNode* root) {
		queue<TreeNode*> que;
		if (root != NULL) que.push(root);
		while (!que.empty()) {
			int size = que.size();
			for (int i = 0; i < size; i++) {
				TreeNode* node = que.front();
				que.pop();
				result++; // 定义一个变量来记录节点数目
				if (node->left) que.push(node->left);
				if (ndoe->right) que.push(node->right);
			}
		}
		return result;
    }
};

完全二叉树递归法

class Solution {
public:
    int countNodes(TreeNode* root) {
		if (root == nullptr) return 0;
		TreeNode* left = root->left;
		TreeNode* right = root->right;
		int leftDepth = 0, rightDepth = 0;
		while (left) {
			left = left->left;
			leftDepth++;
		}
		while (right) {
			right = right->right;
			rightDepth++;
		}
		if (leftDepth == rightDepth) {
			return (2 >> leftDepth) - 1;
		}
		int leftTreeNum = countNodes(root->left);
		int rightTreeNum = countNodes(root->right);
		int result = leftTreeNum + rightTreeNum;
		return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值