题目描述
给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。
完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。
示例 1:
输入:root = [1,2,3,4,5,6]
输出:6
示例 2:
输入:root = []
输出:0
示例 3:
输入:root = [1]
输出:1
提示:
- 树中节点的数目范围是[0, 5 * 104]
- 0 <= Node.val <= 5 * 104
- 题目数据保证输入的树是 完全二叉树
进阶:遍历树来统计节点是一种时间复杂度为 O(n) 的简单解决方案。你可以设计一个更快的算法吗?
解题思路
有普通二叉树和完全二叉树两个思路。
普通二叉树
递归法
递归三部曲:
- 确定递归函数的参数和返回值
参数是传入树的根节点,返回节点的数目,所以为int
int getNodesNum (TreeNode* cur)
- 确定递归的终止条件
如果节点为空,就返回0,表示节点数目为0if (cur == NULL) return 0;
- 确定单层递归的逻辑
先求左子树的节点数目,再求右子树的节点数目,最后取总和,再+1。+1的原因是因为要算上当前中间节点。int leftNum = getNodesNum(cur->left); int rightNum = getNodesNum(cur->right); int treeNum = leftnum + rightNum + 1; return treeNum;
迭代法
常规的层序遍历,中间加一个变量用来保存节点数目即可
完全二叉树
完全二叉树有两种,一种是它是一个满二叉树,另一种则是一个子树为满二叉树,另一个最后一层的节点没有填满。
对于第一种,可以直接用公式2^树的深度 - 1
来计算。
对于第二种,假设左子树为满二叉树,那么右子树的最后一层节点没有填满,我们递归左右孩子,递归到一定深度就会发现满二叉树和没有填满节点的二叉树,满二叉树按照公式求节点个数即可,没有填满节点的二叉树正常递归求节点数目即可。
接下来就需要考虑如何找到满二叉树和没有填满节点的二叉树,如果递归向左递归的深度 = 递归向右递归的深度,那么这个树就是一个满二叉树;如果递归向左遍历的深度 != 递归向右遍历的深度,则说明不是满二叉树。
那么在递归三部曲第二步终止条件上应该这样写:
if (root == nullptr) return 0;
// 根据左深度和右深度是否相同来判断子树是不是满二叉树
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0;
while (left) { // 求左子树的深度
left = left->left;
leftDepth++;
}
while (right) {
right = right->right;
rightDepth++;
}
if (leftDepth == rightDepth) {
// (2 << 1)相当于2^2,所以 (2 << leftDepth) - 1 的意思是返回满足满二叉树的子树的节点数量
return (2 << leftDepth) - 1;
}
递归三部曲的第三部:
int leftTreeNum = countNodes(root->left);
int rightTreeNum = countNodes(root->right);
int result = leftTreeNum + rightTreeNum + 1;
return result;
代码实现
普通二叉树递归法
class Solution {
public:
int getNodesNum(TreeNode* cur) {
if (cur == NULL) return 0;
int leftNum = getNodesNum(cur->left);
int rightNum = getNodesNum(cur->right);
int treeNum = leftNum + rightNum + 1;
return treeNum;
}
public:
int countNodes(TreeNode* root) {
return getNodesNum(root);
}
};
普通二叉树迭代法
class Solution {
public:
int countNodes(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
while (!que.empty()) {
int size = que.size();
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
result++; // 定义一个变量来记录节点数目
if (node->left) que.push(node->left);
if (ndoe->right) que.push(node->right);
}
}
return result;
}
};
完全二叉树递归法
class Solution {
public:
int countNodes(TreeNode* root) {
if (root == nullptr) return 0;
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0;
while (left) {
left = left->left;
leftDepth++;
}
while (right) {
right = right->right;
rightDepth++;
}
if (leftDepth == rightDepth) {
return (2 >> leftDepth) - 1;
}
int leftTreeNum = countNodes(root->left);
int rightTreeNum = countNodes(root->right);
int result = leftTreeNum + rightTreeNum;
return result;
}
};