PAT 01-1. 最大子列和问题(20)-Python

8 篇文章 0 订阅

01-1. 最大子列和问题(20)

给定K个整数组成的序列{ N1, N2, …, NK },“连续子列”被定义为{ Ni, Ni+1, …, Nj },其中 1 <= i <= j <= K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

输入格式:

输入第1行给出正整数 K (<= 100000);第2行给出K个整数,其间以空格分隔。

输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:

6
-2 11 -4 13 -5 -2

输出样例:

20

解决:使用Python语言、在线处理方式,时间复杂度为O(n)

#! /usr/bin/env python
# -*- coding: utf-8 -*-

# 最大子列和,同时输出第一个和最后一个元素
def MaxSubseqSum(seq):
    '''(list of number) -> int
    问题:最大子列和问题
    解决方法:在线处理
    时间复杂度:O(n)

    >>> seq = [-2, 11, -4, 13, -5, -2]
    >>> MaxSubseqSum(seq)
    20
    '''
    maxsum = 0
    thisum = 0
    for i in range(len(seq)):
        thisum = thisum + seq[i]
        if thisum > maxsum:
            maxsum = thisum
        if thisum < 0:
            thisum = 0

    return maxsum



if __name__ == '__main__':
    length=int(input())     # 列表长度
    seq = []                # 列表
    getin = input()
    seqtemp = []
    seqtemp = getin.split(' ')   # 获取字符
    for i in range(length):
        seq.append(int(seqtemp[i]))

    print(MaxSubseqSum(seq))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值