01-1. 最大子列和问题(20)
给定K个整数组成的序列{ N1, N2, …, NK },“连续子列”被定义为{ Ni, Ni+1, …, Nj },其中 1 <= i <= j <= K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
输入格式:
输入第1行给出正整数 K (<= 100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20
解决:使用Python语言、在线处理方式,时间复杂度为O(n)
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# 最大子列和,同时输出第一个和最后一个元素
def MaxSubseqSum(seq):
'''(list of number) -> int
问题:最大子列和问题
解决方法:在线处理
时间复杂度:O(n)
>>> seq = [-2, 11, -4, 13, -5, -2]
>>> MaxSubseqSum(seq)
20
'''
maxsum = 0
thisum = 0
for i in range(len(seq)):
thisum = thisum + seq[i]
if thisum > maxsum:
maxsum = thisum
if thisum < 0:
thisum = 0
return maxsum
if __name__ == '__main__':
length=int(input()) # 列表长度
seq = [] # 列表
getin = input()
seqtemp = []
seqtemp = getin.split(' ') # 获取字符
for i in range(length):
seq.append(int(seqtemp[i]))
print(MaxSubseqSum(seq))