03-树1. 二分法求多项式单根(20)

7 篇文章 0 订阅

03-树1. 二分法求多项式单根(20)

题目要求

二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0。

二分法的步骤为:

检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a, (a+b)/2],令b=(a+b)/2,重复循环;
本题目要求编写程序,计算给定3阶多项式f(x)=a3x3+a2x2+a1x+a0在给定区间[a, b]内的根。

输入格式:

输入在第1行中顺序给出多项式的4个系数a3、a2、a1、a0,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。

输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。

输入样例:

3 -1 -3 1
-0.5 0.5

输出样例:

0.33

实现代码

使用C语言实现,注意:输入变量都需要定义为double类型,否则会出错

/*
By:jixiangrurui
Date:2015.08.18
C语言
Nothing Replaces Hard Word
*/

#include <stdio.h>

#define EXP 1e-3

double coef[4];
double Polynomial(double x){
    int i;
    double result = coef[0];
    for(i=1;i<4;i++)
        result = coef[i] + x * result;
    return result;
}
double BinarySearch(double left,double right){
    double mid;
    double a = left;
    double b = right;
    while(b -a > EXP){
        mid = (a + b) / 2;
        if(Polynomial(mid) == 0){
            return mid;
        }else if(Polynomial(a)*Polynomial(mid) > 0)
                  a = mid;
              else
                  b = mid;
    }
    if(Polynomial(mid) != 0)
        return mid;
}
int main()
{
    double a,b;
    double result;
    scanf("%lf%lf%lf%lf", coef, coef+1, coef+2, coef+3);
    scanf("%lf%lf", &a, &b);
    result = BinarySearch(a,b);
    printf("%.2f\n",result);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值