235. 二叉搜索树的最近公共祖先
class Solution {
public:
void get_path(TreeNode* root, TreeNode* target, vector<TreeNode*>& path){
while(root){
path.push_back(root);
if(target->val>root->val)
root=root->right;
else if(target->val<root->val)
root=root->left;
else
return;
}
return;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
vector<TreeNode*> path1, path2;
TreeNode *res;
get_path(root,p,path1);
get_path(root,q,path2);
for(int i=0; i<path1.size()&&i<path2.size();i++){
if(path1[i]==path2[i])
res=path1[i];
}
return res;
}
};
待查询的节点本身也需进path,解决p就是q的父节点的case。
701. 二叉搜索树中的插入操作
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if(root==nullptr)
return new TreeNode(val);
if(val<root->val)
root->left=insertIntoBST(root->left,val);
else
root->right=insertIntoBST(root->right,val);
return root;
}
};
利用递归返回值,完成父子关系的绑定:下一层加入节点返回新树,本层用root->left或者root->right将其接住。
450. 删除二叉搜索树中的节点
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if(root==nullptr)
return nullptr;
if(key==root->val){
if(root->left==nullptr)
return root->right;
if(root->right==nullptr)
return root->left;
auto cur=root->right;
while(cur->left){
cur=cur->left;
}
cur->left=root->left;
return root->right;
}
else if(key>root->val)
root->right=deleteNode(root->right,key);
else
root->left=deleteNode(root->left,key);
return root;
}
};
难点在删除左右子树都存在的节点上,核心思路是将左子树搬到右子树最左(搜索树特性,最左值最小) ,这样可以保持搜索树中序递增特性。