14、移动开发技术:Maemo Linux与Windows Mobile编程

移动开发技术:Maemo Linux与Windows Mobile编程

1. Maemo Linux开发与调试

在Maemo Linux开发中,Eclipse是一个强大的调试工具。以调试Maemo应用为例,我们可以在Eclipse中进行如下操作:
- 找到文件开头被点击的函数按钮,在调用 gtk_main_quit() 函数的那一行设置断点。具体操作是在Eclipse编辑器的左侧边缘右键单击,从弹出菜单中选择“toggle breakpoint”。
- 点击程序屏幕上的按钮,程序执行会在我们定义的断点处停止,此时可以自由查看程序的状态,包括读取变量和寄存器的值等。

值得注意的是,即使在调试运行于最终软件环境的实际设备上的程序时,也可以使用相同的界面。只需要在设备上安装并启动 gdbserver 即可。

Maemo SDK结合Scratchbox环境为开发提供了便利。Scratchbox内部有一些复杂的细节,但通过与高级工具结合,开发者在进行软件开发任务时,几乎可以忘记自己实际上是在进行交叉开发。而且,Scratchbox可用于为通用的嵌入式Linux平台构建开发环境。如果对Maemo平台的软件开发项目感兴趣,可以参考Maemo网站上的详细教程。

2. Windows Mobile编程基础

如今,越来越多的手机和PDA搭载了Windows Mobile操作系统。下面将介绍使用.NET Compact Framework针对Windows Mobile平台开发应用的相关技术。

2.1 .NET和C#简介

.NET是一个

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值