- 博客(6)
- 收藏
- 关注
原创 Ollama本地化部署指南
Ollama是一个开源工具,旨在简化大型语言模型(LLM)的本地部署和使用过程。它允许用户在个人计算机上运行各种先进的AI模型,如DeepSeek-R1、Qwen 3、Llama 3.3、Qwen 2.5‑VL和Gemma 3等,无需依赖云服务。本地化运行:所有模型在本地设备上运行,保护隐私和数据安全多平台支持:兼容Windows、macOS和Linux系统简单易用:提供简洁的命令行界面和API接口GPU加速:支持NVIDIA和AMD GPU加速推理模型管理:便捷的模型下载、切换和管理功能。
2025-06-01 17:38:52
864
原创 本地部署大模型 vs 网页版大模型区别
fill:#333;color:#333;color:#333;fill:none;本地服务器/工作站硬件资源私有化部署GPU集群高速存储模型文件训练框架推理引擎。
2025-06-01 17:13:04
752
原创 FastGPT与Dify智能体搭建平台详解
智能体搭建平台是指为用户提供构建、部署和管理AI应用的一站式解决方案。这类平台通常集成了大语言模型调用、知识库管理、工作流编排等功能,使得开发者能够以低代码甚至零代码的方式快速构建智能应用。随着大语言模型技术的成熟,FastGPT和Dify等平台应运而生,为AI应用开发提供了便捷高效的工具。FastGPT是一个基于LLM大语言模型的知识库问答系统,将智能对话与可视化编排完美结合,让AI应用开发变得简单自然。它是一个开源的AI知识库构建平台,具备数据处理、模型调用、RAG检索及可视化AI工作流编排等核心功能。
2025-06-01 12:23:04
634
原创 MCP(模型上下文协议)详细介绍
MCP(模型上下文协议)作为一种开放标准,为大型语言模型与外部世界的交互提供了统一的接口。它解决了数据孤岛问题,增强了数据安全性,并促进了开放生态的形成。通过MCP,AI应用能够更智能、更安全地访问和操作各种数据源和工具,从而提供更丰富、更实用的功能。虽然MCP仍处于发展早期,面临一些挑战,但其开放性和灵活性为AI应用的未来发展提供了广阔空间。随着更多开发者和企业的参与,MCP生态将不断壮大,为AI应用带来更多可能性。
2025-06-01 12:19:57
615
原创 Agent(智能体)详细介绍
AI Agent(智能代理)代表了人工智能从被动响应向主动行动的重要转变。通过结合大型语言模型的强大理解和生成能力,以及与外部工具和环境的交互能力,AI Agent能够自主完成复杂任务,为用户提供全新的智能辅助体验。随着技术的不断发展,AI Agent将在个人助理、企业应用、创意创作、教育学习和专业研究等多个领域发挥越来越重要的作用。同时,我们也需要关注安全控制、幻觉问题、隐私保护和资源消耗等挑战,确保AI Agent的发展方向符合人类的长远利益。
2025-06-01 12:18:44
593
原创 RAG(检索增强生成)详细介绍
RAG(检索增强生成)技术通过结合信息检索和大语言模型的生成能力,有效解决了大模型在实际应用中面临的知识局限性、幻觉问题和数据安全性等挑战。它使AI系统能够"查阅资料"后再回答问题,大大提高了回答的准确性、可靠性和实用性。RAG的实现涉及数据准备和应用两个主要阶段,包括数据提取、文本分割、向量化、数据入库、检索、提示注入和生成等关键步骤。通过合理设计和优化这些环节,可以构建出高效、准确的RAG系统,为各种专业领域和应用场景提供智能问答和信息处理能力。
2025-06-01 11:43:30
555
RAG技术详解:检索增强生成提升大型语言模型实时性和准确性
2025-06-01
【大模型分类详解】基于Transformer与CNN/RNN架构的语言、视觉、语音及多模态大模型应用领域与技术原理分析
2025-06-01
大模型蒸馏技术:AI模型压缩与高效部署的深度解析及应用探索
2025-06-01
【deepseek模型应用】不同规模deepseek模型特性分析及其应用场景汇总:从小模型到极大模型的全面解析
2025-06-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人