自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 Ollama本地化部署指南

Ollama是一个开源工具,旨在简化大型语言模型(LLM)的本地部署和使用过程。它允许用户在个人计算机上运行各种先进的AI模型,如DeepSeek-R1、Qwen 3、Llama 3.3、Qwen 2.5‑VL和Gemma 3等,无需依赖云服务。本地化运行:所有模型在本地设备上运行,保护隐私和数据安全多平台支持:兼容Windows、macOS和Linux系统简单易用:提供简洁的命令行界面和API接口GPU加速:支持NVIDIA和AMD GPU加速推理模型管理:便捷的模型下载、切换和管理功能。

2025-06-01 17:38:52 864

原创 本地部署大模型 vs 网页版大模型区别

fill:#333;color:#333;color:#333;fill:none;本地服务器/工作站硬件资源私有化部署GPU集群高速存储模型文件训练框架推理引擎。

2025-06-01 17:13:04 752

原创 FastGPT与Dify智能体搭建平台详解

智能体搭建平台是指为用户提供构建、部署和管理AI应用的一站式解决方案。这类平台通常集成了大语言模型调用、知识库管理、工作流编排等功能,使得开发者能够以低代码甚至零代码的方式快速构建智能应用。随着大语言模型技术的成熟,FastGPT和Dify等平台应运而生,为AI应用开发提供了便捷高效的工具。FastGPT是一个基于LLM大语言模型的知识库问答系统,将智能对话与可视化编排完美结合,让AI应用开发变得简单自然。它是一个开源的AI知识库构建平台,具备数据处理、模型调用、RAG检索及可视化AI工作流编排等核心功能。

2025-06-01 12:23:04 634

原创 MCP(模型上下文协议)详细介绍

MCP(模型上下文协议)作为一种开放标准,为大型语言模型与外部世界的交互提供了统一的接口。它解决了数据孤岛问题,增强了数据安全性,并促进了开放生态的形成。通过MCP,AI应用能够更智能、更安全地访问和操作各种数据源和工具,从而提供更丰富、更实用的功能。虽然MCP仍处于发展早期,面临一些挑战,但其开放性和灵活性为AI应用的未来发展提供了广阔空间。随着更多开发者和企业的参与,MCP生态将不断壮大,为AI应用带来更多可能性。

2025-06-01 12:19:57 615

原创 Agent(智能体)详细介绍

AI Agent(智能代理)代表了人工智能从被动响应向主动行动的重要转变。通过结合大型语言模型的强大理解和生成能力,以及与外部工具和环境的交互能力,AI Agent能够自主完成复杂任务,为用户提供全新的智能辅助体验。随着技术的不断发展,AI Agent将在个人助理、企业应用、创意创作、教育学习和专业研究等多个领域发挥越来越重要的作用。同时,我们也需要关注安全控制、幻觉问题、隐私保护和资源消耗等挑战,确保AI Agent的发展方向符合人类的长远利益。

2025-06-01 12:18:44 593

原创 RAG(检索增强生成)详细介绍

RAG(检索增强生成)技术通过结合信息检索和大语言模型的生成能力,有效解决了大模型在实际应用中面临的知识局限性、幻觉问题和数据安全性等挑战。它使AI系统能够"查阅资料"后再回答问题,大大提高了回答的准确性、可靠性和实用性。RAG的实现涉及数据准备和应用两个主要阶段,包括数据提取、文本分割、向量化、数据入库、检索、提示注入和生成等关键步骤。通过合理设计和优化这些环节,可以构建出高效、准确的RAG系统,为各种专业领域和应用场景提供智能问答和信息处理能力。

2025-06-01 11:43:30 555

RAG技术详解:检索增强生成提升大型语言模型实时性和准确性

内容概要:RAG(Retrieval Augmented Generation,检索增强生成)是一种结合检索和生成能力的AI技术,旨在优化大型语言模型(LLM)的输出。RAG通过从外部知识库获取实时信息,增强LLM的回答准确性和时效性,无需重新训练模型。其工作流程包括数据准备、检索、提示增强和生成四个主要步骤。RAG的优势在于提高回答的准确性、实时性和成本效益,广泛应用于智能聊天机器人、问答系统和AI助手等领域。然而,RAG也面临数据质量、性能问题、隐私与安全及集成复杂性等挑战。; 适合人群:对AI技术和自然语言处理感兴趣的开发者、研究人员以及希望提升AI应用性能的企业技术人员。; 使用场景及目标:①提高智能聊天机器人的回答准确性和实时性;②构建企业内部问答系统,提供最新政策和信息;③增强AI助手的功能,使其能够处理复杂查询并生成上下文相关的回答。; 其他说明:RAG技术的实现涉及嵌入模型、向量数据库和检索算法等工具。未来,RAG有望在可扩展性、适应性和企业应用方面取得重大突破,成为AI技术的重要支柱。

2025-06-01

【大模型分类详解】基于Transformer与CNN/RNN架构的语言、视觉、语音及多模态大模型应用领域与技术原理分析

内容概要:本文详细介绍了大模型的分类及其应用领域和技术架构。首先按照核心应用领域分为语言大模型、视觉大模型、语音大模型和多模态大模型四类,其中语言大模型又细分为通用型和领域专用型。接着从技术架构与训练方式角度进行了分类,包括模型结构差异、训练阶段分级和参数规模分级。文中还列举了不同架构类型的典型模型及其应用领域,如Transformer系的BERT、ViT用于NLP和跨模态任务,CNN/RNN系的ResNet、Wav2Vec 2.0用于传统视觉/语音任务。最后给出了实用工具推荐,如文档转换工具Omni-Zerox、gptpdf,以及部署优化工具Markdown-Website。 适合人群:从事人工智能、机器学习相关工作的研究人员、工程师,尤其是对大模型有研究兴趣或者实际应用需求的专业人士。 使用场景及目标:帮助读者了解不同类型大模型的特点、应用场景和技术原理,以便根据具体业务需求选择合适的大模型进行开发或研究;同时提供了一些辅助工具供参考,方便用户在实际工作中使用。 其他说明:文章内容涵盖了大模型领域的多个方面,既有宏观视角下的分类概括,也有微观层面的技术细节分析,对于想要深入了解大模型的读者来说是一份非常有价值的参考资料。

2025-06-01

大模型蒸馏技术:AI模型压缩与高效部署的深度解析及应用探索

内容概要:本文介绍了大模型蒸馏技术,这是一种将复杂AI模型的知识传递给轻量级模型的方法。文中首先解释了该技术的核心思想,即教师模型(如GPT-4)通过特定算法向学生模型(如手机端AI)传授知识,使后者在体积大幅减小的情况下仍能保持较高性能。接着阐述了技术原理的三个关键要素:软标签蒸馏、温度参数调控以及特征模仿机制。随后,文章详细描述了实施过程的四个步骤,包括教师-学生模型的选择、双重损失函数的设计、渐进式训练策略以及部署优化技巧。最后探讨了该技术的应用场景及其面临的挑战和未来发展趋势。 适合人群:对AI模型优化感兴趣的开发者、研究人员以及希望了解如何在资源受限环境下部署高效AI系统的工程师。 使用场景及目标:①适用于需要在移动设备或其他计算资源有限的环境中部署高性能AI应用的场景;②帮助从业者理解如何通过蒸馏技术提高模型效率并降低成本;③为研究者提供前沿发展方向,如联邦蒸馏、动态蒸馏等领域的探索。 阅读建议:由于本文涉及较多的技术细节和应用场景,建议读者结合实际项目需求来理解各个部分的内容,特别是技术原理和实施步骤部分,同时关注当前存在的挑战和未来的研究方向。

2025-06-01

深度学习领域大模型微调技术详解:全参数、冻结层、提示学习等方法及金融、医疗应用

深度学习领域大模型微调技术详解:全参数、冻结层、提示学习等方法及金融、医疗应用

2025-06-01

【deepseek模型应用】不同规模deepseek模型特性分析及其应用场景汇总:从小模型到极大模型的全面解析

内容概要:本文详细介绍了deepseek系列模型,按照规模分为小模型(1.5b-8b)、中模型(14b-32b)、大模型(70b)和极大模型(671b),并分别阐述了每个模型的优点、缺点及其适用的应用场景。

2025-06-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除