Deep Learing
文章平均质量分 75
鼬花园
这个作者很懒,什么都没留下…
展开
-
yolo_playvideo.c
#include "network.h"#include "detection_layer.h"#include "cost_layer.h"#include "utils.h"#include "parser.h"#include "box.h"#ifdef OPENCV#include "opencv2/highgui/highgui_c.h"#endifchar *vo原创 2016-01-11 14:53:12 · 2218 阅读 · 2 评论 -
matlab 实践程序1——利用DL的toolbox实现数字检测
弄了这么长时间,总算看懂了一些东西,原创 2014-09-22 21:56:34 · 2143 阅读 · 2 评论 -
caffe 实践程序3——caffe提取特征以及由模型test数据
在 cifar100目录下 //提取conv3的特征../../build/tools/extract_features.bin cifar10_quick_iter_16000 cifar100_quick_train.prototxt ip1 yjyfeature 500 CPU 0../../build/tools/extract_features.bin cifar10_quick_原创 2015-03-09 19:29:30 · 2424 阅读 · 0 评论 -
caffe实践程序1——mnist任务总结
一般来说,跑一个数据集需要以下步骤:1 把数据集转换成leveldb格式。可以参考tools文件夹下convert_imageset.cpp,可以直接拿来用或者修改成适合你的数据集;2 写网络配置文件,写train.prototxt和test.prototxt,还有solver.prototxt。可以参照cifar10等例子。3 训练:tools的train_net.cpp原创 2014-08-11 22:17:55 · 2479 阅读 · 0 评论 -
caffe 实践程序4——cifar10网络
cifar10是个中小型的图片数据库,总共60000张32*32大小的图片,5w张用于训练,1w张用于测试。caffe上cifar10的训练流程。cifar10_quick_train_test.prototxtname: "CIFAR10_quick"layer { name: "cifar" type: "Data" top: "data" top: "l原创 2015-05-22 18:05:35 · 1419 阅读 · 0 评论 -
caffe 实践程序2——用细分的方法实现caffe中cifar100的识别
../../build/tools/extract_features.bin cifar10_quick_iter_16000 cifar100_quick_train.prototxt ip1 yjyfeature 500 CPU 01,修改convert_cifar_data的文件的内容,void read_image(std::ifstream* file, int* label,原创 2015-02-09 15:28:16 · 2874 阅读 · 2 评论 -
如何在VS 2012开发平台中搭建CUDA开发环境以及opencv的配置方法
当前配置: 系统:WIN7 64位 开发平台:VS 2012 显卡:英伟达G卡 CUDA版本:6.0第一步:下载 cuda_6.0第二步:运行安装程序,弹出安装过程中转文件路径设定框,这个路径随便填无所谓,安装完后就会自动删除的。第三步:等待系统帮你检测当前平台是否适合搭建CUDA。第四原创 2015-01-03 20:57:19 · 1985 阅读 · 0 评论 -
Stanford 机器学习 第四讲-------逻辑回归(Logistic Regression)
斯坦福大学机器学习"逻辑回归“学习笔记,本次课程主要包括7部分:1) Classification(分类)2) Hypothesis Representation3) Decision boundary(决策边界)4) Cost function(代价函数,成本函数)5) Simplified cost function and gradient desce转载 2014-03-19 16:43:21 · 3701 阅读 · 0 评论 -
Stanford 机器学习 第三讲------- 多变量线性回归
第二讲-------多变量线性回归 Linear Regression with multiple variable(一)、Multiple Features:多变量假设:输出由多维输入决定,即输入为多维特征。如下图所示:Price为输出,前面四维为输入:假设h(x)=θ0+θ1x1+……所谓多参数线性回归即每个输入x有(n+1)维[x0……xn]转载 2014-03-17 16:53:31 · 816 阅读 · 0 评论 -
Stanford 机器学习 第二讲------- 线性回归及梯度下降
本文会讲到:(1)线性回归的定义(2)单变量线性回归(3)cost function:评价线性回归是否拟合训练集的方法(4)梯度下降:解决线性回归的方法之一(5)feature scaling:加快梯度下降执行速度的方法(6)多变量线性回归Linear Regression 注意一句话:多变量线性回归之前必须要Feature S转载 2014-03-17 15:09:13 · 839 阅读 · 0 评论 -
Stanford 机器学习 第一讲-------监督学习,无监督学习和半监督学习
n Supervised Learning 有监督学习 机器学习按照学习方式的不同,分为supervised learning和unsupervised learning,这里先介绍Supervised Learning即有监督学习,举一个简单的例子,假设你想卖房子,但是你不知道怎么定价,而你有附近其他房子的定价信息。让x轴为平方数,y轴为价格,我们得到下面这个图,在图中我们看到价格数和平转载 2014-03-17 11:36:33 · 1132 阅读 · 0 评论 -
darknet网络中识别本地视频
// 郝老师修改视频,在darknet中嵌入识别本地视频的程序。#ifdef OPENCVimage ipl_to_image(IplImage* src);#include #include "image.h"#include #include "highgui.h"#include "opencv2/highgui/highgui_c.h"#include "opencv2原创 2016-01-12 10:02:21 · 6206 阅读 · 0 评论