
深度学习
文章平均质量分 92
可爱的鸡仔
河南师范大学在校学生
展开
-
深度学习系列--04.梯度下降以及其他优化器
在一元函数 中,梯度和导数本质上是相同的概念。导数表示函数在某一点处的变化率,它描述了函数值随自变量变化的快慢程度。梯度在一元函数中也是指函数在某一点的变化率,所以此时梯度就是导数。例如,对于函数y=2x+1 ,其导数y`=2 ,这也是该函数在任意点的梯度。在机器学习和深度学习领域,它被广泛应用于模型参数的优化,例如神经网络中权重和偏置的更新,以最小化损失函数。:不断重复计算梯度和更新参数的过程,直到满足停止条件,例如达到最大迭代次数、梯度的模小于某个。梯度下降的核心思想基于函数的梯度特性。原创 2025-02-06 23:31:41 · 1162 阅读 · 0 评论 -
深度学习系列--03.激活函数
是一种添加到人工神经网络中的,它为神经网络中神经元的输出添加了非线性在神经网络中,神经元接收来自其他神经元的输入,并通过加权求和等方式计算出一个。激活函数则根据这个净输入值来决定神经元,以及激活的,从而决定神经元向后续层传递的输出值。通过引入激活函数,神经网络能够学习和表示更复杂的关系,原创 2025-02-06 15:19:07 · 885 阅读 · 0 评论 -
深度学习系列--02.损失函数
是机器学习和深度学习中用于衡量模型结果与标签之间的函数,它在模型训练和评估过程中起着至关重要的作用。原创 2025-02-05 16:05:56 · 1603 阅读 · 0 评论 -
深度学习系列--01.入门
是机器学习的分支,是指使用多层的神经网络进行机器学习的一种手法抖音百科。它学习样本数据的内在规律和表示层次,最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。:在神经网络中,每个神经元都有自己的偏置。对于输入层到隐藏层的连接,假设隐藏层有个神经元,那么就会有个偏置值,分别记为。)都可以传输信号,接收神经元可以处理信号后再发信号通知与之相连的下层神经元。,用来权衡信号的强度,权重会随着学习的进行而变化。通常,神经元是分层的,信号从第一层(,其神经元之间的每个连接(原创 2025-02-05 16:03:38 · 964 阅读 · 0 评论