因为做洛谷试炼场,做到一个题,看到很多大神用离散化来做,我于是也%了一发。matrix67神犇写的离散化比较棒。然后做了一下他提到的题,对离散化有了初步的认识。
传送门:http://www.matrix67.com/blog/archives/108
下面贴题:
此题来自VijosP1056传送门https://vijos.org/p/1056
题目描述
桌面上放了N个平行于坐标轴的矩形,这N个矩形可能有互相覆盖的部分,求它们组成的图形的面积。
输入输出格式
输入格式
输入第一行为一个数N(1≤N≤100),表示矩形的数量。下面N行,每行四个整数,分别表示每个矩形的左下角和右上角的坐标,坐标范围为–10^8到10^8之间的整数。
输出格式
输出只有一行,一个整数,表示图形的面积。
输入输出样例
INPUT
3
1 1 4 3
2 -1 3 2
4 0 5 2
OUTPUT
10
题解:把横纵坐标轴排个序,然后缩点,这样就可以存下了。
温馨提示:注意数据范围,请使用long long
#include<iostream>
#include<cstdio>
#include<map>
#include<algorithm>
#include<cstring>
#include<vector>
#define LL long long
using namespace std;
const int maxn=110;
struct mp{
int x1,x2,y1,y2;
bool read(){//处理错误数据
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
return x1<=x2&&y1<=y2;
}
}N[maxn];
int X,n;
bool table[maxn*2][maxn*2];
void solve();
int main(){
int i;
cin>>n;
for(i=0;i<n;i++)
if(N[X].read())X++;
solve();
return 0;
}
void solve(){
int i,j,k;
vector<int>x,y;
for(i=0;i<X;i++){
x.push_back(N[i].x1);
x.push_back(N[i].x2);
y.push_back(N[i].y1);
y.push_back(N[i].y2);
}
sort(x.begin(),x.end());
sort(y.begin(),y.end());
x.erase(unique(x.begin(),x.end()),x.end());//排除相同坐标
y.erase(unique(y.begin(),y.end()),y.end());
//离散化
map<int,int> mx,my;
int xn=x.size(),yn=y.size();
for(i=0;i<xn;i++) mx[x[i]]=i;
for(i=0;i<yn;i++) my[y[i]]=i;
for(k=0;k<X;k++)
for(i=mx[N[k].x1];i<mx[N[k].x2];i++)
for(j=my[N[k].y1];j<my[N[k].y2];j++)
table[i][j]=true;
//计算
LL ans=0;
for(i=0;i<xn;i++)
for(j=0;j<yn;j++)
if(table[i][j])
ans+=(LL)((x[i+1]-x[i]))*(y[j+1]-y[j]);
cout<<ans;
}