[离散化]图形面积

因为做洛谷试炼场,做到一个题,看到很多大神用离散化来做,我于是也%了一发。matrix67神犇写的离散化比较棒。然后做了一下他提到的题,对离散化有了初步的认识。
传送门:http://www.matrix67.com/blog/archives/108
下面贴题:
此题来自VijosP1056传送门https://vijos.org/p/1056

题目描述

桌面上放了N个平行于坐标轴的矩形,这N个矩形可能有互相覆盖的部分,求它们组成的图形的面积。

输入输出格式

输入格式

输入第一行为一个数N(1≤N≤100),表示矩形的数量。下面N行,每行四个整数,分别表示每个矩形的左下角和右上角的坐标,坐标范围为–10^8到10^8之间的整数。

输出格式

输出只有一行,一个整数,表示图形的面积。

输入输出样例

INPUT

3
1 1 4 3
2 -1 3 2
4 0 5 2

OUTPUT

10

题解:把横纵坐标轴排个序,然后缩点,这样就可以存下了。
温馨提示:注意数据范围,请使用long long

#include<iostream>
#include<cstdio>
#include<map>
#include<algorithm>
#include<cstring>
#include<vector>
#define LL long long
using namespace std;

const int maxn=110; 

struct mp{
    int x1,x2,y1,y2;
    bool read(){//处理错误数据
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        return x1<=x2&&y1<=y2;
    }
}N[maxn];

int X,n;
bool table[maxn*2][maxn*2];

void solve();

int main(){
    int i;
    cin>>n;
    for(i=0;i<n;i++)
        if(N[X].read())X++;
    solve();
    return 0;
}

void solve(){   
    int i,j,k;
    vector<int>x,y;
    for(i=0;i<X;i++){
        x.push_back(N[i].x1);
        x.push_back(N[i].x2);
        y.push_back(N[i].y1);
        y.push_back(N[i].y2);
    }
    sort(x.begin(),x.end());
    sort(y.begin(),y.end());
    x.erase(unique(x.begin(),x.end()),x.end());//排除相同坐标
    y.erase(unique(y.begin(),y.end()),y.end());
    //离散化
    map<int,int> mx,my;
    int xn=x.size(),yn=y.size();
    for(i=0;i<xn;i++) mx[x[i]]=i;
    for(i=0;i<yn;i++) my[y[i]]=i;
    for(k=0;k<X;k++)
        for(i=mx[N[k].x1];i<mx[N[k].x2];i++)
            for(j=my[N[k].y1];j<my[N[k].y2];j++)
                table[i][j]=true;
    //计算
    LL ans=0;
    for(i=0;i<xn;i++)
        for(j=0;j<yn;j++)
            if(table[i][j])
                ans+=(LL)((x[i+1]-x[i]))*(y[j+1]-y[j]);
    cout<<ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值