最近公共祖先

算法简介

另一种理解方式是把T理解为一个无向无环图,而LCA(T,u,v)即u到v的最短路上深度最小的点。

这里给出一个LCA的例子:

对于T=<V,E>

V={1,2,3,4,5}

E={(1,2),(1,3),(3,4),(3,5)}

则有:

LCA(T,5,2)=1

LCA(T,3,4)=3

LCA(T,4,5)=3

算法

编辑

离线算法 Tarjan

利用并查集优越的时空复杂度,我们可以实现LCA问题的O(n+Q)算法,这里Q表示询问的次数。

Tarjan算法基于深度优先搜索的框架,对于新搜索到 的一个结点,首先创建由这个结点构成的集合,再对当前结点的每一个子树进行搜索,每搜索完一棵子树,则可确定子树内的LCA询问都已解决。其他的LCA询问的结果必然在这个子树之外,这时把子树所形成的集合与当前结点的集合合并,并将当前结点设为这个集合的祖先。

之后继续搜索下一棵子树,直到当前结点的所 有子树搜索完。这时把当前结点也设为已被检查过的,同时可以处理有关当前结点的LCA询问,如果有一个从当前结点到结点v的询问,且v已被检查过,则由于 进行的是深度优先搜索,当前结点与v的最近公共祖先一定还没有被检查,而这个最近公共祖先的包涵v的子树一定已经搜索过了,那么这个最近公共祖先一定是v 所在集合的祖先。

下面给出这个算法的伪代码描述:

LCA(u){
Make-Set(u)
ancestor[Find-Set(u)]=u
对于u的每一个孩子v{
LCA(v)
Union(u)
ancestor[Find-Set(u)]=u
}
checked[u]=true
对于每个(u,v)属于P{
ifchecked[v]=true
then回答u和v的最近公共祖先为ancestor[Find-Set(v)]
}
}

 

由于是基于深度优先搜索的算法,只要调用LCA(root[T])就可以回答所有的提问了,这里root[T]表示树T的根,假设所有询问(u,v)构成集合P。

在线算法 倍增法

每次询问O(logN)

d[i] 表示 i节点的深度, p[i,,j] 表示 i 的 2^j 倍祖先

那么就有一个递推式子 p[i,,j]=p[p[i,,j-1],,j-1]

这样子一个O(NlogN)的预处理求出每个节点的 2^k 的祖先

然后对于每一个询问的点对(a, b)的最近公共祖先就是:

先判断是否 d[a] > d[b] ,如果是的话就交换一下(保证 a 的深度小于 b 方便下面的操作),然后把b 调到与a 同深度, 同深度以后再把a, b 同时往上调(dec(j)) 调到有一个最小的j 满足p[a,,j]!=p[b,,j] (a b 是在不断更新的), 最后再把 a, b 往上调 (a=p[a,0], b=p[b,0]) 一个一个向上调直到a = b, 这时 a or b 就是他们的最近公共祖先。

算法实例

编辑

问题描述:

设计一个算法,对于给定的树中 结点返回它们的最近公共祖先。

编程任务:

对于给定的树和树中结点对,计算结点对的最近公共祖先。

数据输入:

由文件input.txt给出输入数据。

第一行有1个正整数n,表示给定的树有n个顶点,编0号为1,2,…,n。编号为1 的顶点是树根。接下来的n 行中,第i+1 行描述与i 个顶点相关联的子结点的信息。每行的第一个正整数k表示该顶点的儿子结点数。其后k个数中,每1 个数表示1 个儿子结点的编号。当k=0 时表示相应的结点是叶结点。文件的第n+2 行是1 个正整数m,表示要计算最近公共祖先的m个结点对。接下来的m行,每行2 个正整数,是要计算最近公共祖先的结点编号。

结果输出:

将编程计算出的m个结点对的最近公共祖先结点编号输出到文件output.txt。每行3 个

正整数,前2 个是结点对编号,第3 个是它们的最近公共祖先结点编号。

输入文件示例(input.txt)


12
3 2 3 4
2 5 6
0
0
2 7 8
2 9 10
0
0
0
2 11 12
0
0
5
3 11
7 12
4 8
9 12
8 10


​

 

输出文件示例(output.txt)

3 11 1
7 12 2
4 8 1
9 12 6
8 10 2

 

 

C++代码实现:
#include<iostream>
#include<stdio.h>
#include<memory.h>
using namespace std;
#definemax_size 1010
int d[max_size],p[max_size][10];
int head[max_size];
int cnt;
structEdge{
    int v;
    int pre;
}eg[max_size];
//建树的函数
void add(int x,int y){
    eg[cnt].v=y;
    eg[cnt].pre=head[x];
    head[x]=cnt++;
}
//dfs()初始整颗数,算出d[1-n],p[1-n][j];
void dfs(intk){
    if (head[k]==0) return;
    int m,x,i,j;
    for(i=head[k];i!=0;i=eg[i].pre){
        x=eg[i].v;
        p[x][0]=k;
        m=k;
        d[x]=d[k]+1;
        for(j=0;p[m][j]!=0;j++){
            p[x][j+1]=p[m][j];//利用公式p[x][j]=p[p[x][j-1]][j-1],这里的m就是p[x][j-1];
            m=p[m][j];
        }
    dfs(x);
    }
}
int find_lca(int x,int y){
    int m,k;
    if (x==y) return x;
    if(d[x]<d[y]){m=x;x=y;y=m;}
    m=d[x]-d[y];
    k=0;
    while(m){//将x的深度调到和y的深度一样
        if(m&1) x=p[x][k];
        m>>=1;
        k++;
    }
    if (x==y)return x;
    k=0;//向上调节,找最近公共祖先,算法的核心,相当于一个二分查找。
    while(x!=y){
        if (p[x][k]!=p[y][k]||p[x][k]==p[y][k]&&k==0){//如果p[x][k]还不相等,说明节点p[x][k]还在所求点的下面,所以继续向上调节;如果相等了,并且就是他们父节点,则那个节点一定就是所求点。
            x=p[x][k];
            y=p[y][k];
            k++;
        }
    else k--;//如果p[x][k]=p[y][k],可以说明p[x][k]一定是x和y的共祖先,但不一定是最近的,所以向下找看还有没有更近的公共祖先
    }
    return x;
}
int main(){
    int i,n,m,x,y;
    while(cin>>n>>m){
        memset(head,0,sizeof(head));
        memset(p,0,sizeof(p));
        memset(d,0,sizeof(d));
        cnt=1;
        for(i=2;i<=n;i++){
            scanf("%d",&x);
            add(x,i);
        }
        dfs(1);
        for(i=0;i<m;i++){
            scanf("%d%d",&x,&y);
            printf("%d/n",find_lca(x,y));
        }
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值