威尔逊定理

这个东西好像在比赛中的用处不大,而且也不像欧拉和费马一样有一些额外的拓展

威尔逊定理:

当n为质数时有:
( n − 1 ) ! ≡ − 1 ( m o d    n ) (n-1)!\equiv -1(mod\;n) (n1)!1(modn)或者是:
( n − 2 ) ! ≡ 1 ( m o d    n ) (n-2)!\equiv 1(mod \;n) (n2)!1(modn)

应用:

在网上找到了一道很有意思的数学脑洞题链接

求 ∑ k = 1 n [    ( 3 k + 6 ) ! + 1 3 k + 7 − [ ( 3 k + 6 ) ! 3 k + 7 ]    ]        ( [ x ] 表 示 向 下 取 整 ) 求\sum_{k=1}^n[\;\dfrac{(3k+6)!+1}{3k+7}-[\dfrac{(3k+6)!}{3k+7}]\;] \;\;\;([x]表示向下取整) k=1n[3k+7(3k+6)!+1[3k+7(3k+6)!]]([x])

根据威尔逊定理可知,当3k+7为素数时 , (    ( 3 k + 6 ) ! + 1    ) % ( 3 k + 7 ) = 0 (\;(3k+6)!+1\;)\%(3k+7)=0 ((3k+6)!+1)%(3k+7)=0

观察 [ ( 3 k + 6 ) ! 3 k + 7 ] , [\dfrac{(3k+6)!}{3k+7}], [3k+7(3k+6)!],分子加1后这个式子为一个整数,也就是说 [ ( 3 k + 6 ) ! 3 k + 7 ] = ( 3 k + 6 ) ! + 1 3 k + 7 − 1 [\dfrac{(3k+6)!}{3k+7}]=\dfrac{(3k+6)!+1}{3k+7}-1 [3k+7(3k+6)!]=3k+7(3k+6)!+11

所以3k+7为素数时,整个式子的答案为1


有意思的是,当3k+7不是素数时,显然3k+7可以写成a*b , 且a,b!=1,a,b!=13k+7 , 所以a和b会在(3k+6)!里面出现,即 [ ( 3 k + 6 ) ! 3 k + 7 ] = ( 3 k + 6 ) ! 3 k + 7 [\dfrac{(3k+6)!}{3k+7}]=\dfrac{(3k+6)!}{3k+7} [3k+7(3k+6)!]=3k+7(3k+6)!
所以3k+7不是素数时,整个式子的答案为0

有人问我如果a=b的时候不是在1~(3k+6)只出现一次吗?

其实,第一个出现这种情况是在k=3时,3k+7是16,也就是说我们一定可以找到其他两个数(比如2和8)

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值