[数学] 二元映射到群环域

从二元映射到群环域

1 前言

生活当中的二元映射非常常见, 如

  1. 拼接操作: 将两张纸片拼接成一个长纸片
  2. 装订操作: 将两份文件装订成一份文件
  3. 破冰操作: 将两群人合并成一群人
  4. 打车操作: 选取一个乘客和出发地到目的地的偏移, 就能将乘客从出发地送到目的地
  5. 投票操作: 选取一个黑箱和票, 就能将票投入黑箱中
  6. 复合操作: 某人有两件事要办, 复合操作可以将两件事按先后顺序复合成一件事

其中有些二元映射具有一些特性, 如3是可交换的
当考虑对多个对象反复应用映射时, 有些二元映射还会反映出额外的特性, 如1,2,3,6是可结合的
有些二元映射还会具有特殊的对象, 如拼接操作中如果一张纸片与空纸片拼接, 那么该纸片保持不变(幺元)
再如装订操作中, 如果某份文件与假文件拼接, 那么整份文件都会变成假文件(零元)

数学中的二元映射如
7. 加法: + + +
8. 乘法: ∗ *
9. 除法: ÷ ÷ ÷
10. 并: ∪ ∪
11. 交: ∩ ∩
12.函数复合: ∘ \circ
13. 二元函数: f ( x , y ) f(x, y) f(x,y)

其中加法具有幺元(0), 乘法具有幺元(1), 并具有幺元( ∅ \varnothing ), 函数复合具有幺元( f ( x ) = x f(x)=x f(x)=x)
乘法具有零元( 0 0 0), 交具有零元( ∅ \varnothing )

本文将讨论二元映射常见的一些现象, 以及拥有这些现象的二元映射的一些特性

在学习群环域的时候切记不要总是将有理数和加法, 实数和加法等数群代入来比较, 这些群的性质非常优良, 几乎符合所有可以想象得到的二元映射的现象, 导致难以区分群环域等各个概念之间的渐进关系

2 广群及现象

2.1 定义

  • 二元运算(binary operation): 二元映射的别称
  • 运算(operation): 在本文特指二元运算

运算必定连带定义了左定义域, 右定义域和值域, 即运算是一个 X × Y → Z X\times Y\to Z X×YZ的映射, 下面用 f ( x , y ) = z f(x, y)=z f(x,y)=z表记该映射, 有时亦用 x + y = z x+y=z x+y=z, x ∗ y = z x*y=z xy=z, x y = z xy=z xy=z等记号表记该映射.

  • 广群(groupoid): 左定义域, 右定义域和值域三者相等的运算及其值域构成一个广群

若值域表记为 A A A, 运算表记为 f ( x , y ) = z f(x,y)=z f(x,y)=z x + y = z x+y=z x+y=z, 那么广群表记为 < A , f > <A,f> <A,f> < A , + > <A,+> <A,+>

  • 广群的阶(order): 广群的值域的基数称为广群的阶

阶有限的称为有限广群, 阶无限的称为无限广群

2.2 现象

下面讨论广群 < A , f > <A,f> <A,f>

2.2.1 幺元
  • 左幺元(left identity element): 如果存在 e l e_l el, 使得 f ( e l , x ) = x f(e_l, x)=x f(el,x)=x恒成立, 则 e l e_l el称为左幺元
  • 右幺元(right identity element): 如果存在 e r e_r er, 使得 f ( x , e r ) = x f(x, e_r)=x f(x,er)=x恒成立, 则 e r e_r er称为右幺元
  • 幺元(identity element): 如果广群所有的左幺元与所有的右幺元存在且相同, 则合称幺元 e = e l = e r e=e_l=e_r e=el=er
2.2.2 零元
  • 左零元(left zero element): 如果存在 θ l \theta_l θl, 使得 f ( θ l , x ) = θ l f(\theta_l, x)=\theta_l f(θl,x)=θl恒成立, 则 θ l \theta_l θl称为左零元
  • 右零元(right zero element): 如果存在 θ r \theta_r θr, 使得 f ( x , θ r ) = θ r f(x, \theta_r)=\theta_r f(x,θr)=θr恒成立, 则 θ r \theta_r θr称为右零元
  • 零元(zero element): 如果广群所有的左零元与所有的右零元存在且相同, 则合称零元 θ = θ l = θ r \theta=\theta_l=\theta_r θ=θl=θr
2.2.3 幂等元 幂等律
  • 幂等元(idempotent element): 如果存在 a a a使得等式 f ( a , a ) = a f(a,a)=a f(a,a)=a成立, 则称 a a a为幂等元
  • 幂等律(idempotent law): 如果所有元素都是幂等元, 则称广群满足幂等律
2.2.4 可消去元 消去律
  • 左可消去元(left cancellative element): 如果可由 f ( a , x ) = f ( a , y ) f(a,x)=f(a,y) f(a,x)=f(a,y)推导出 x = y x=y x=y, 那么 a a a为左可消去元
  • 右可消去元(right cancellative element): 如果可由 f ( x , a ) = f ( y , a ) f(x,a)=f(y,a) f(x,a)=f(y,a)推导出 x = y x=y x=y, 那么 a a a为右可消去元
  • 可消去元(cancellative element): 如果广群所有的左可消去元与所有的右可消去元存在且相同, 则合称可消去元
  • 消去律(cancellative law): 如果所有元素都是可消去元, 则称广群满足消去律
2.2.5 逆元 可逆元

下面设广群具有幺元 e e e

  • 左逆元(left inverse element): 对于某一 a ∈ A a\in A aA, 存在 a l − 1 a_l^{-1} al1, 使得 f ( a l − 1 , a ) = e f(a_l^{-1}, a)=e f(al1,a)=e, 则称 a a a左可逆, a l − 1 a_l^{-1} al1 a a a的左逆元
  • 右逆元(right inverse element): 对于某一 a ∈ A a\in A aA, 存在 a r − 1 a_r^{-1} ar1, 使得 f ( a , a r − 1 ) = e f(a, a_r^{-1})=e f(a,ar1)=e, 则称 a a a右可逆, a r − 1 a_r^{-1} ar1 a a a的右逆元
  • 逆元(inverse element): 对于某一 a ∈ A a\in A aA, 其所有的左逆元与右逆元存在且相同, 则合称逆元 a − 1 = a l − 1 = a r − 1 a^{-1}=a_l^{-1}=a_r^{-1} a1=al1=ar1, 并称 a a a可逆
  • 可逆元: 可逆的元素即可逆元
2.2.6 交换律
  • 交换律(commutative law): 如果等式 f ( a , b ) = f ( b , a ) f(a,b)=f(b,a) f(a,b)=f(b,a)恒成立, 则称广群满足交换律
2.2.7 反交换律
  • 反交换律: 如果等式 f ( a , b ) = − f ( b , a ) f(a,b)=-f(b,a) f(a,b)=f(b,a)恒成立, 则称广群满足反交换律
2.2.8 结合律
  • 结合律(associative law): 如果等式 f ( f ( a , b ) , c ) = f ( a , f ( b , c ) ) f(f(a,b),c)=f(a,f(b,c)) f(f(a,b),c)=f(a,f(b,c))恒成立, 则称广群满足结合律

结合律具有非常多的性质

3 从半群到循环群

在这里插入图片描述

  • 0: 表示不存在
  • 1: 表示存在1个
  • A: 表示全部都是

3.1 半群

  • 半群(semigroup): 满足结合律的广群

  • 幂(power): 半群下, 式子 f ( f ( ⋯ f ( f ( a , a ) , a ) ⋯   , a ) , a ) f(f(\cdots f(f(a,a),a)\cdots,a),a) f(f(f(f(a,a),a),a),a) a + a + ⋯ + a a+a+\cdots+a a+a++a的含义随即唯一, 即可简写为 f n ( a ) f^n(a) fn(a) a n a^n an, 其中式子中有 n n n f f f
    幂有如下性质
    f ( f n ( a ) , f m ( a ) ) = f n + m ( a ) f(f^n(a),f^m(a))=f^{n+m}(a) f(fn(a),fm(a))=fn+m(a) f m ( f n ( a ) ) = f n m ( a ) f^m(f^n(a))=f^{nm}(a) fm(fn(a))=fnm(a)

  • 幺元唯一: 如果半群有左幺元或右幺元, 那么左幺元即右幺元即幺元, 并且唯一

  • 零元唯一: 如果半群有左零元或右零元, 那么左零元即右零元即零元, 并且唯一

  • 逆元唯一: ∀ a ∈ A \forall a\in A aA, 如果 a a a有左逆元或右逆元, 那么左逆元即右逆元即逆元, 并且唯一

  • 可消去元唯一: ∀ a ∈ A \forall a\in A aA, a a a是左可消去元或右可消去元, 那么 a a a是左可消去元也是右可消去元也是可消去元

  • 可逆元即可消去元: ∀ a ∈ A \forall a\in A aA, 如果 a a a是可逆元, 那么 a a a是可消去元

  • 等式 f ( a − 1 , b − 1 ) = ( f ( b , a ) ) − 1 f(a^{-1},b^{-1})=(f(b,a))^{-1} f(a1,b1)=(f(b,a))1成立

注意, 可消去元未必是可逆元

3.2 幺半群

  • 幺半群(monoid): 存在幺元的半群

下面是一些幺半群的例子

矩阵乘法: < M n × n , ⋅ > <M_{n\times n},\cdot> <Mn×n,>(方阵和矩阵乘法构成幺半群)

3.3 交换半群

  • 交换半群(commutative semigroup): 满足交换律的半群

3.4 交换幺半群

  • 交换幺半群(commutative monoid): 满足交换律的幺半群

3.5 循环半群 生成元

  • 生成元(generating element): 如果半群 < A , f > <A,f> <A,f>中存在 a ∈ A a\in A aA, 使得 ∀ x ∈ A \forall x\in A xA, 关于整数 n n n的方程 f n ( a ) = x f^n(a)=x fn(a)=x总有解, 那么称 a a a为半群的生成元
  • 循环半群(cyclic semigroup): 含有生成元的半群称为循环半群

循环半群一定满足交换律, 即为交换半群

设有循环半群 < A , + > <A,+> <A,+>, 生成元为 e e e, 可用下式简单说明
a + b = e n a + e n b = ( e + e + ⋯ + e ) + ( e + e + ⋯ + e ) = e n b + e n a = b + a a+b=e^{n_a}+e^{n_b}=(e+e+\cdots+e)+(e+e+\cdots+e)=e^{n_b}+e^{n_a}=b+a a+b=ena+enb=(e+e++e)+(e+e++e)=enb+ena=b+a

3.6 循环幺半群

  • 循环幺半群: 含有幺元的循环半群或含有生成元的幺半群

3.7 群

  • 群(group): 每个元都可逆的幺半群称为群
  • 元素的阶(order): 群 < A , f > <A,f> <A,f>具有幺元 e e e, 对于某一元素 a ∈ A a\in A aA, 如果方程 f n ( a ) = e f^n(a)=e fn(a)=e有解则称元素 a a a的阶有限且为 n n n, 如果方程无解则称元素 a a a的阶无限

当群的值域具有2个以上元素时, 群不能有零元

下面是一些群的例子

乘法: < Q − { 0 } , × > <\mathbb{Q}-\{0\}, \times> <Q{0},×>
矩阵乘法: < { M n × n ∣ r ( M n × n ) = n } , ⋅ > <\{M_{n\times n}|r(M_{n\times n})=n\}, \cdot> <{Mn×nr(Mn×n)=n},>(满秩方阵和矩阵乘法构成群)
单位根群: 如 < { x ∣ x 4 = 1 } , × > <\{x|x^4=1\},\times> <{xx4=1},×>
置换群, 对称群, 变换群等

3.7.1 有限群
3.7.1.1 置换群
  • 置换: 有限集合 A A A到有限集合 A A A的双射映射: f : A → A f: A\to A f:AA, 依 A A A的元素数量 n n n, 称该置换为 n n n元置换. 也可用对有序数列 < 1 , 2 , 3 , ⋯   , n > <1,2,3,\cdots,n> <1,2,3,,n>进行一次打乱重排变为 < x 1 , x 2 , x 3 , ⋯   , x n > <x_1,x_2,x_3,\cdots,x_n> <x1,x2,x3,,xn>的过程表示

两次置换按先后顺序进行复合可以得到一个新的置换, 该置换可用函数的复合运算 ∘ \circ 表示

  • 置换群: 由一组 n n n元置换和函数的复合运算构成的群称为 n n n次置换群

一切有限群都与某个置换群同构

3.7.1.2 交错群
  • 对换: 只对有序数列中的两个数字进行一次交换的置换称为对换

置换可分解为多个对换, 可用多个对换的复合表示一个置换
一个置换要么只能分解成奇数个对换, 要么只能分解成偶数个对换

  • 偶置换: 用偶数个对换表示的置换
  • 奇置换: 用奇数个对换表示的置换

奇置换与奇置换复合得到偶置换, 但偶置换与偶置换复合也得到偶置换, 由此可定义交错群

  • 交错群: 所有的 n n n元偶置换与函数的复合运算 ∘ \circ 构成 n n n次交错群, 记作 A n A_n An
3.7.1.3 对称群
  • 对称群: 所有的 n n n元置换与函数的复合运算 ∘ \circ 构成 n n n次对称群, 记作 S n S_n Sn

n n n次交错群和所有的 n n n元置换群都是 n n n次对称群的子群

一切有限群都是某个对称群的子群, 同时对称群也是一个有限群

3.7.2 无限群
3.7.2.1 变换群
  • 变换: 集合 A A A到集合 A A A的双射映射: f : A → A f:A\to A f:AA

两次变换按先后顺序进行复合可以得到一个新的变换, 该变换可用函数的复合运算 ∘ \circ 表示

  • 变换群: 某个集合上的所有变换和函数的复合运算构成变换群 < { f ∣ f : A → A } , ∘ > <\{f|f:A\to A\},\circ> <{ff:AA},>

置换群就是有限变换群, 这个结论是平凡的, 为了让讨论有意义, 一般提到变换群都特指阶无限变换群

3.8 交换群

  • 交换群(commutative group), 阿贝尔群(Abelian group): 满足交换律的群

3.9 循环群

  • 循环群(cyclic group): 含有生成元的群

  • 剩余类加群: 一切有限循环群都与 < n ‾ , + n > <\underline{n},+_n> <n,+n>( n n n阶剩余类加群)同构

  • 整数加法群: 一切无限循环群都与 < Z , + > <\mathbb{Z}, +> <Z,+>(整数加法群)同构

其中 n ‾ = [ 0 , n ) ∩ Z \underline{n}=[0,n)\cap\mathbb{Z} n=[0,n)Z, a + n b = ( a + b ) mod  n a+_nb=(a+b)\text{mod }n a+nb=(a+b)mod n

4 双映射代数及现象

4.1 定义

  • 代数: 设 A A A上有多个二元映射 < A , f > , < A , g > , ⋯ <A,f>,<A,g>,\cdots <A,f>,<A,g>,, 定义代数为有序集, 记作 < A , f , g , ⋯ > <A,f,g,\cdots> <A,f,g,>
  • 双映射代数: 具有两个二元映射的代数 < A , f , g > <A,f,g> <A,f,g>, 含有两个广群 < A , f > <A,f> <A,f> < A , g > <A,g> <A,g>, 分别称为第一广群, 第二广群

4.2 现象

4.2.1 分配律

< A , f , g > <A,f,g> <A,f,g>(或 < A , ∘ , ∗ > <A,\circ,*> <A,,>)是双映射代数, ∀ a , b , c ∈ A \forall a,b,c\in A a,b,cA

  • 左分配律: 如果等式 g ( a , f ( b , c ) ) = f ( g ( a , b ) , g ( a , c ) ) g(a,f(b,c))=f(g(a,b),g(a,c)) g(a,f(b,c))=f(g(a,b),g(a,c))(或 a ∗ ( b ∘ c ) = ( a ∗ b ) ∘ ( a ∗ c ) a*(b\circ c)=(a*b)\circ(a*c) a(bc)=(ab)(ac))恒成立, 则称双映射代数满足左分配律, g g g f f f左可分配
  • 右分配律: 如果等式 g ( f ( b , c ) , a ) = f ( g ( b , a ) , g ( c , a ) ) g(f(b,c),a)=f(g(b,a),g(c,a)) g(f(b,c),a)=f(g(b,a),g(c,a))(或 ( b ∘ c ) ∗ a = ( b ∗ a ) ∘ ( c ∗ a ) (b\circ c)*a=(b*a)\circ(c*a) (bc)a=(ba)(ca))恒成立, 则称双映射代数满足右分配律, g g g f f f右可分配
  • 分配律(distributive law): 如果双映射代数满足左分配律和右分配律则称双映射代数满足分配律, g g g f f f可分配
4.2.2 吸收律

< A , f , g > <A,f,g> <A,f,g>是双映射代数, ∀ a , b ∈ A \forall a,b\in A a,bA

  • 吸收律(absorption law): 如果等式 f ( x , g ( x , y ) ) = x f(x,g(x,y))=x f(x,g(x,y))=x g ( x , f ( x , y ) ) = x g(x,f(x,y))=x g(x,f(x,y))=x恒成立, 则称双映射代数满足吸收律

5 从环到域

在这里插入图片描述

  • 0: 表示不存在
  • -0: 表示除零元外

5.1 环 零因子 环的零元

  • 环(ring): 第一广群为交换群, 第二广群为半群, 且满足分配律的双映射代数称为环
  • 零因子: 环 < A , f , g > <A,f,g> <A,f,g>的第一广群的幺元记为 θ \theta θ, 如果存在 a , b ∈ A − { θ } a,b\in A-\{\theta\} a,bA{θ}, 使得 g ( a , b ) = θ g(a,b)=\theta g(a,b)=θ, 则称 a a a b b b为零因子
  • 加法群: 环的第一广群, 至少为交换群
  • 乘法群: 环的第二广群, 至少为半群

此外也有定义第二广群为幺半群的环(幺环), 注意鉴别

记环为 < A , f , g > <A,f,g> <A,f,g>, 第一广群的幺元记为 0 0 0, 第一广群的某一元素 a a a的逆元记为 − a -a a
环中成立以下等式
g ( a , f ( b , − c ) ) = f ( g ( a , b ) , − g ( a , c ) ) g(a,f(b,-c))=f(g(a,b),-g(a,c)) g(a,f(b,c))=f(g(a,b),g(a,c)) g ( f ( b , − c ) , a ) = f ( g ( b , a ) , − g ( c , a ) ) g(f(b,-c),a)=f(g(b,a),-g(c,a)) g(f(b,c),a)=f(g(b,a),g(c,a)) g ( a , 0 ) = g ( 0 , a ) = 0 g(a,0)=g(0,a)=0 g(a,0)=g(0,a)=0 g ( a , − b ) = g ( − a , b ) = − g ( a , b ) g(a,-b)=g(-a,b)=-g(a,b) g(a,b)=g(a,b)=g(a,b) g ( − a , − b ) = g ( a , b ) g(-a,-b)=g(a,b) g(a,b)=g(a,b) g 2 ( f ( a , b ) ) = f ( f ( f ( g 2 ( a ) , g ( a , b ) ) , g ( b , a ) ) , g 2 ( b ) ) g^2(f(a,b))=f(f(f(g^2(a),g(a,b)),g(b,a)),g^2(b)) g2(f(a,b))=f(f(f(g2(a),g(a,b)),g(b,a)),g2(b)) g 2 ( f ( a , − b ) ) = f ( f ( f ( g 2 ( a ) , − g ( a , b ) ) , − g ( b , a ) ) , g 2 ( b ) ) g^2(f(a,-b))=f(f(f(g^2(a),-g(a,b)),-g(b,a)),g^2(b)) g2(f(a,b))=f(f(f(g2(a),g(a,b)),g(b,a)),g2(b)) g ( f ( ⋯ f ( f ( a 1 , a 2 ) , a 3 ) , ⋯   ) , a n ) , f ( ⋯ f ( f ( b 1 , b 2 ) , b 3 ) , ⋯   ) , b m ) ) = f ( ⋯ f ( f ( g ( a 1 , b 1 ) , g ( a 1 , b 2 ) ) , g ( a 1 , b 3 ) ) , ⋯   ) , g ( a n , b m ) ) g(f(\cdots f(f(a_1,a_2),a_3),\cdots),a_n),f(\cdots f(f(b_1,b_2),b_3),\cdots),b_m))=f(\cdots f(f(g(a_1,b_1),g(a_1,b_2)),g(a_1,b_3)),\cdots),g(a_n,b_m)) g(f(f(f(a1,a2),a3),),an),f(f(f(b1,b2),b3),),bm))=f(f(f(g(a1,b1),g(a1,b2)),g(a1,b3)),),g(an,bm))
记环为 < A , + , × > <A,+,\times> <A,+,×>, 第一广群的幺元记为 0 0 0, 第一广群的某一元素 a a a的逆元记为 − a -a a, a + ( − b ) a+(-b) a+(b)记为 a − b a-b ab
环中成立的等式亦可写作
a × ( b − c ) = a b − a c a\times(b-c)=ab-ac a×(bc)=abac ( b − c ) × a = b a − c a (b-c)\times a=ba-ca (bc)×a=baca a × 0 = 0 × a = 0 a\times0=0\times a=0 a×0=0×a=0 a × ( − b ) = ( − a ) × b = − a b a\times(-b)=(-a)\times b=-ab a×(b)=(a)×b=ab ( − a ) × ( − b ) = a b (-a)\times(-b)=ab (a)×(b)=ab ( a ± b ) 2 = a 2 ± a b ± b a + b 2 (a±b)^2=a^2±ab±ba+b^2 (a±b)2=a2±ab±ba+b2 ( ∑ i = 1 n a i ) × ( ∑ i = 1 m b i ) = ∑ i = 1 n ∑ j = 1 m a i × b j \left(\sum_{i=1}^n a_i\right)\times \left(\sum_{i=1}^m b_i\right)=\sum_{i=1}^n\sum_{j=1}^ma_i\times b_j (i=1nai)×(i=1mbi)=i=1nj=1mai×bj

  • 环的零元: 第一广群的幺元是第二广群的零元, 因此称第一广群的幺元为环的零元

下面是一些环的例子

满秩方阵与矩阵加法和矩阵乘法构成环

5.2 半环

  • 半环(semiring): 第一广群去除全部为可逆元的要求的环

5.3 交换环

  • 交换环: 第二广群满足交换律的环

记交换环为 < A , + , × > <A,+,\times> <A,+,×>
交换环中成立以下等式 ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2=a^2+2ab+b^2 (a+b)2=a2+2ab+b2

二项式定理 ( a + b ) n = ∑ i = 0 n C n i a i b n − i (a+b)^n=\sum_{i=0}^n\text{C}_n^ia^ib^{n-i} (a+b)n=i=0nCniaibni

5.4 幺环

  • 幺环: 第二广群有幺元的环

5.5 整环

  • 整环: 第二广群含幺元且无零因子的交换环

下面是一些整环的例子

整式(多项式环)

5.6 除环

  • 除环: 第二广群除去零元后是群且无零因子的环

5.7 域

  • 域(field): 第二广群除去零元后是交换群的整环

下面是一些域的例子

< p ‾ , + p , × p > <\underline{p},+_p,\times_p> <p,+p,×p>, p p p为质数
< Q , + , × > <\mathbb{Q},+,\times> <Q,+,×>
有理式

6 子群

6.1 陪集

  • 同余关系: 设群 < G , f > <G,f> <G,f>有子群 < H , f > <H,f> <H,f>, 对于群中的某两个元素 a , b ∈ G a,b\in G a,bG, 如果有 f ( a , b − 1 ) ∈ H f(a,b^{-1})\in H f(a,b1)H, 那么称 a a a b b b为模 H H H同余关系, 记作 a ≡ b ( mod  H ) a≡b(\text{mod }H) ab(mod H)
    同余关系有如下三条性质
  • 自反性: a ≡ a ( mod  H ) a≡a(\text{mod }H) aa(mod H)恒成立
  • 对称性: 若 a ≡ b ( mod  H ) a≡b(\text{mod }H) ab(mod H), 则 b ≡ a ( mod  H ) b≡a(\text{mod }H) ba(mod H)
  • 传递性: 若 a ≡ b ( mod  H ) a≡b(\text{mod }H) ab(mod H), b ≡ c ( mod  H ) b≡c(\text{mod }H) bc(mod H), 则 a ≡ c ( mod  H ) a≡c(\text{mod }H) ac(mod H)

H H H同余关系是 G G G上的等价关系, 由等价关系可构造等价类, 商集

注意到 x ≡ a ( mod  H ) x≡a(\text{mod }H) xa(mod H)当且仅当 x ∈ { f ( h , a ) ∣ h ∈ H } x\in \{f(h,a)|h\in H\} x{f(h,a)hH}, 由此引出右陪集

  • 右陪集: H a = { f ( h , a ) ∣ h ∈ H } Ha=\{f(h,a)|h\in H\} Ha={f(h,a)hH}

类似地, 定义另一种同余关系 f ( a − 1 , b ) ∈ H f(a^{-1}, b)\in H f(a1,b)H可以得到左陪集

  • 左陪集: a H = { f ( a , h ) ∣ h ∈ H } aH=\{f(a,h)|h\in H\} aH={f(a,h)hH}

其中 a a a称为代表元

陪集具有如下性质

  • e H = H = H e eH=H=He eH=H=He
  • a H = H = H a ⇔ a ∈ H aH=H=Ha\Leftrightarrow a\in H aH=H=HaaH
  • H a = H b ⇔ a ∈ H b ⇔ f ( a , b − 1 ) ∈ H Ha=Hb\Leftrightarrow a\in Hb\Leftrightarrow f(a,b^{-1})\in H Ha=HbaHbf(a,b1)H, a H = b H ⇔ a ∈ b H ⇔ f ( a − 1 , b ) ∈ H aH=bH\Leftrightarrow a\in bH\Leftrightarrow f(a^{-1},b)\in H aH=bHabHf(a1,b)H
  • ∣ a H ∣ = ∣ H ∣ = ∣ H a ∣ |aH|=|H|=|Ha| aH=H=Ha
  • ∣ a H ∣ = ∣ b H ∣ |aH|=|bH| aH=bH

6.2 拉格朗日定理

如果有限群 < G , f > <G,f> <G,f>具有子群 < H , f > <H,f> <H,f>, 那么群 G G G的值域总是能被划分出等价类 G = H ∪ H 1 ∪ H 2 ∪ ⋯ ∪ H k G=H\cup H_1\cup H_2\cup\cdots\cup H_k G=HH1H2Hk, 并且 ∣ H ∣ = ∣ H 1 ∣ = ∣ H 2 ∣ = ⋯ = ∣ H k ∣ |H|=|H_1|=|H_2|=\cdots=|H_k| H=H1=H2==Hk, ∣ G ∣ = k ∣ H ∣ |G|=k|H| G=kH, 由此得到拉格朗日定理

  • 有限群的阶总能被其子群的阶整除

质数阶的群(有限群)具有如下性质

  • 只有平凡子群, 无真子群
  • 是循环群

6.3 正规子群

  • 正规子群: 设 < G , f > <G,f> <G,f>具有子群 < H , f > <H,f> <H,f>, 如果 ∀ a ∈ G \forall a\in G aG都有 a H = H a aH=Ha aH=Ha, 则称 H H H G G G的正规子群, 此时左陪集和右陪集合称陪集

任意群 < G , f > <G,f> <G,f>的两个平凡子群 < G , f > <G,f> <G,f> < { e } , f > <\{e\},f> <{e},f>都是该群的正规子群

如果群 < G , f > <G,f> <G,f>具有两个正规子群 < H 1 , f > <H_1,f> <H1,f> < H 2 , f > <H_2,f> <H2,f>, 那么 < H 1 ∩ H 2 , f > <H1\cap H_2,f> <H1H2,f>也是正规子群

< G , ∗ > <G,*> <G,>的子群 < H , ∗ > <H,*> <H,>是正规子群当且仅当 ∀ a ∈ G , ∀ b ∈ H \forall a\in G, \forall b\in H aG,bH a ∗ b ∗ a − 1 ∈ H a*b*a^{-1}\in H aba1H

交换群的子群都是正规子群

  • 同态核: 设有两个群 < A , ∗ > <A,*> <A,>, < B , ∘ > <B,\circ> <B,>(幺元为 e B e_B eB)和一个群同态 f : A → B f: A \to B f:AB, 那么定义 f f f的同态核为
    Ker f = { a ∣ a ∈ A ∧ f ( a ) = e B } \text{Ker}f=\{a|a\in A\land f(a)=e_B\} Kerf={aaAf(a)=eB}

同态核构成的群 < Ker f , ∗ > <\text{Ker}f,*> <Kerf,> A A A的正规子群

6.4 商群

  • G / H G/H G/H: 设 < G , f > <G,f> <G,f>具有正规子群 < H , f > <H,f> <H,f>, 定义 G / H = { a H ∣ a ∈ G } = { H a ∣ a ∈ G } G/H=\{aH|a\in G\}=\{Ha|a\in G\} G/H={aHaG}={HaaG}

  • 商群: 在 G / H G/H G/H上可定义有一种运算: ⊙ : ∀ a H , b H ∈ G / H , a H ⊙ b H = ( a ∗ b ) H \odot:\forall aH, bH\in G/H,aH\odot bH=(a*b)H :aH,bHG/H,aHbH=(ab)H, 恰使 < G / H , ⊙ > <G/H,\odot> <G/H,>构成群, 该群称为商群

商群具有以下性质

  • ∣ G / H ∣ = ∣ G ∣ ∣ H ∣ |G/H|=\dfrac{|G|}{|H|} G/H=HG
  • 总存在自然映射 g : G → G / H , ∀ a ∈ G , g ( a ) = a H g: G\to G/H, \forall a\in G, g(a)=aH g:GG/H,aG,g(a)=aH 是从群到商群的满同态映射
  • 在同构的意义下, 群只与其商群同态

设有两个群 < A , ∗ > <A,*> <A,>, < B , ∘ > <B,\circ> <B,>和一个满同态 f : A → B f: A \to B f:AB, 那么 A A A的商群 < A / Ker f , ⊙ > <A/\text{Ker}f, \odot> <A/Kerf,> < B , ∘ > <B,\circ> <B,>同构

设有两个群 < A , ∗ > <A,*> <A,>, < B , ∘ > <B,\circ> <B,>和一个群同态 f : A → B f: A \to B f:AB, 那么 A A A的商群 < A / Ker f , ⊙ > <A/\text{Ker}f, \odot> <A/Kerf,> < B , ∘ > <B,\circ> <B,>的某一子群同构

f ( a , b ) = a ⋅ b , V × V → F f(a,b)=a\cdot b, V\times V\to F f(a,b)=ab,V×VF

TODO: 鸽

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值