深度学习
文章平均质量分 87
jkhasdsb
这个作者很懒,什么都没留下…
展开
-
004基于svm支持向量机+hog进行目标检测
支持向量机(SVM)和方向梯度直方图(HOG)是两种常用于图像识别和目标检测的技术。:首先,需要收集包含草莓和非草莓的图像数据集。确保数据集中的图像有标签,以便训练SVM模型。:使用HOG算法从图像中提取特征。HOG特征可以捕捉到图像中物体的纹理和形状信息。在Python中,你可以使用OpenCV或scikit-image库来提取HOG特征。:对提取的HOG特征进行标准化或缩放,以确保它们在相同的范围内。这是为了防止某些特征对SVM的训练产生不正常的影响。原创 2023-09-26 21:43:41 · 355 阅读 · 1 评论 -
005基于传统算法hog+svm进行图像分类
Qt 是一种流行的C++开发框架,提供了丰富的GUI组件和工具,可用于构建各种类型的应用程序,包括桌面应用程序、移动应用程序和嵌入式系统。这些传统图像分类检测算法在一些简单的图像分类任务上表现良好,但随着深度学习的发展,卷积神经网络(CNN)等深度学习算法在图像分类领域取得了显著的进展,特别是在大规模和复杂数据集上的分类任务中。总之,PyQt是一个强大的工具,使开发者能够使用Python语言开发跨平台的GUI应用程序,并利用Qt框架提供的丰富功能和工具。:使用训练好的SVM模型来对新的水果图像进行分类。原创 2023-09-25 22:58:11 · 293 阅读 · 0 评论 -
076基于深度学习训练年龄数据集识别年龄
运行02train.py读取txt中的图片路径和对应标签读取训练,并生成评价指标折线图保存在result文件夹中。运行03.py可以生成服务端接口连接小程序部分,通过小程序端点击按钮加载图片传输到服务端识别文本返回。运行01数据集文本生成制作.py可以对data文件夹下图片保存在txt文本中。原创 2023-09-25 22:54:51 · 455 阅读 · 0 评论 -
080农业病虫害检测-基于CNN卷积神经网络识别包含数据集及训练及预测推理
在02中可以选择的模型有10多种,可以都训练进行对比、包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。需要注意的是,基于卷积神经网络的农业病虫害检测需要大量的数据集和专业的知识来进行模型的构建和训练。同时,模型的泛化能力也是需要考虑的因素,即模型在不同场景下的表现。运行02train.py可以对txt文本中的图片路径读取并训练模型,原创 2023-09-25 22:51:09 · 796 阅读 · 1 评论