初中数学题集锦之绝对值疑难题型

非常喜欢数学证明中的层层递进,由简单明了的基本问题或架设出发,逐渐演绎、推理出初看起来并不太相关的结论出来:)

引子

在开学后,粗略浏览了下现在的教材编成,比较喜欢。

因为书中讲到了对于疑问,需要采取实验的科学精神,以及解决问题时,可以采取分类、归纳的方法论。

如果在解题方法论上,再加一个就是考虑问题需要由简单到复杂,由特殊到一般的知识认知过程,不要一上来就搞最难的!

世界的事情往往是简单的事情搞定了,复杂的事情就水到渠成了。

  • 这个世界是可认识、可分解的

基本概念

  • 在初中数学知识图谱中,遇到的数,最自然的分类为负数、零、正数。其次为有理数、零、无理数

在初中扩展了负数后,使得考虑某些运算,你需要考虑多种可能。例如,某个数平方后等于一个值,则这个某数有可能是正数,或是负数。

  • 以数轴进行数形结合

数轴类似算筹、算盘,以利于推理和演算。在数轴很容易看到数的分类和大小关系。

    • 人类理解图像,要比理解数字和文字能力强大很多

绝对值的几何含义

数轴上AB两点,其值分别对应ab
那么|a - b |绝对值运算,在几何意义上,其实代表数轴上AB两点之间的距离。

因为绝对值不能够直接运算,所以,针对绝对值运算场景,分类讨论几乎是非常必要的,这样你才可以拆开它,进行运算!

但,如果可以确定a <= b,则绝对值计算就可展开为b - a

顺口溜就是大的数减去小的数。

遗留作业

  • 数轴上AB两点,其值分别对应ab。则其正中间的点C对应的值,可以表示为?

基本题型—某动点与两固定点之间的距离和

|x - 1| + |x - 2|的最小值

  • 代数方法

在数轴上按照变量(动点)的位置,原则上需要按照能够确定绝对值运算正负符号的数值区间,进行分段,这样就可以展开绝对值运算,方便计算。

例如,x < 1x >=1 && x <= 2x > 2进行区间分段和分类讨论。

    • x < 1

在展开绝对值运算后,代数式为1 - x + 2 - x = 3 - 2x。减法意味着减少某个量,但随着x向更小的值,甚至向负值推进,负负得正,结果只会变得更大,所以,其最小值为, 3 - 2x > 3 - 2 = 1

    • x >= 1 && x <= 2

在展开绝对值运算后,代数式为x - 1 + 2 - x = 1表现为一个常量

    • x > 2

在展开绝对值运算后,代数式为x - 1 + x - 2 = 2x - 3。式子为变量减去一个常量,在定性分析时可以忽略常量部分,所以,可以看到在x向正无穷大迈进的时间,因为乘法的关系,也只会越来越大。
所以,其最小值为,2x - 3 > 4 - 3 = 1

经过分类讨论,我们得到最小值为1,其体现为两固定点之间的距离

  • 数形结合方法
    可以很清晰地看到,动点在两固定点之间时,距离获得最小值;两侧时,距离都大于这个最小值。

画图可以自行补充,不赘述。

变化问题

|x + 1| + |x + 2|的最小值

可以通过相反数运算,将问题转化为基本题型。

|x - (-1)| + |x - (-2)|

更复杂的动点与多固定点距离和问题

问题:|x - 1| + |x - 2| + |x - 3| + … + |x - 2027|的最小值。

利用到的知识要点:

  • 绝对值运算最小为零
  • 加法运算交换律和结合律不改变运算结果
  • 动点在两固定点之间时,与两固定点的距离和最小
  • 动点所在区间分类讨论

第一步,将动点与多个固定点之间的距离进行交换和结合:
(|x - 1| + |x - 2027|) + (|x - 2| + |x - 2026|) + ... ,则可以看出复杂题型相当于基本题型的组合。

值得注意的问题,多个绝对值和是否可以两两组合,还取决于是奇数个和偶数个,但并不影响最终的问题解决。

  • 偶数个时,取值为最中间两对的区间值
  • 奇数个时,为最中间的孤零鬼的值,也正好使得该绝对值为

这样组合后,可以看到对于动点的要求,是趋向于中间的时间,每个距离和都可以取得最小值,而使得整体最小。

  • 剩下问题:如果每个基本题型距离和最小时,是否整个和最小,则需要分类讨论,可获得显明的证明。读者可以自证,并不很难。

防止进入误区

|x - 1| + 2|x - 2| + 3|x - 3|的最小值

不能简单化为简单题型时,可采用分类讨论,展开绝对值运算,用代数解决方法更简单

其实也可以化为简单题型

|x - 1| + |x - 2| + |x - 2| + |x - 3| + |x - 3| + |x - 3|的最小值

  • 排列为逐次增大的绝对值序列,也可以使用数形结合的方式认为动点与固定点之间的距离,相当于泛化了。但结论是正确的
  • 笔者根据作业帮的提示
  • 从两端开始两两组合,也符合取得最小值时越来越趋中的特点

再次变化

|x - 1| + |2x - 4| + |3x - 9| 的最小值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值