非常喜欢数学证明中的层层递进,由简单明了的基本问题或架设出发,逐渐演绎、推理出初看起来并不太相关的结论出来:)
引子
在开学后,粗略浏览了下现在的教材编成,比较喜欢。
因为书中讲到了对于疑问,需要采取实验的科学精神,以及解决问题时,可以采取分类、归纳的方法论。
如果在解题方法论上,再加一个就是考虑问题需要由简单到复杂,由特殊到一般的知识认知过程,不要一上来就搞最难的!
世界的事情往往是简单的事情搞定了,复杂的事情就水到渠成了。
- 这个世界是可认识、可分解的
基本概念
- 在初中数学知识图谱中,遇到的数,最自然的分类为负数、零、正数。其次为有理数、零、无理数
在初中扩展了负数后,使得考虑某些运算,你需要考虑多种可能。例如,某个数平方后等于一个值,则这个某数有可能是正数,或是负数。
- 以数轴进行数形结合
数轴类似算筹、算盘,以利于推理和演算。在数轴很容易看到数的分类和大小关系。
-
- 人类理解图像,要比理解数字和文字能力强大很多
绝对值的几何含义
数轴上A
、B
两点,其值分别对应a
和b
。
那么|a - b |
绝对值运算,在几何意义上,其实代表数轴上A
、B
两点之间的距离。
因为绝对值不能够直接运算,所以,针对绝对值运算场景,分类讨论几乎是非常必要的,这样你才可以拆开它,进行运算!
但,如果可以确定a <= b
,则绝对值计算就可展开为b - a
。
顺口溜就是大的数减去小的数。
遗留作业
- 数轴上
A
、B
两点,其值分别对应a
和b
。则其正中间的点C对应的值,可以表示为?
基本题型—某动点与两固定点之间的距离和
|x - 1| + |x - 2|的最小值
- 代数方法
在数轴上按照变量(动点)的位置,原则上需要按照能够确定绝对值运算
正负符号的数值区间,进行分段,这样就可以展开绝对值运算,方便计算。
例如,x < 1
、x >=1 && x <= 2
、x > 2
进行区间分段和分类讨论。
-
x < 1
在展开绝对值运算后,代数式为1 - x + 2 - x = 3 - 2x
。减法意味着减少某个量,但随着x向更小的值,甚至向负值推进,负负得正,结果只会变得更大,所以,其最小值为, 3 - 2x > 3 - 2 = 1
-
x >= 1 && x <= 2
在展开绝对值运算后,代数式为x - 1 + 2 - x = 1
表现为一个常量
-
x > 2
在展开绝对值运算后,代数式为x - 1 + x - 2 = 2x - 3
。式子为变量减去一个常量,在定性分析时可以忽略常量部分,所以,可以看到在x向正无穷大迈进的时间,因为乘法的关系,也只会越来越大。
所以,其最小值为,2x - 3 > 4 - 3 = 1
经过分类讨论,我们得到最小值为1
,其体现为两固定点之间的距离
- 数形结合方法
可以很清晰地看到,动点在两固定点之间时,距离获得最小值;两侧时,距离都大于这个最小值。
画图可以自行补充,不赘述。
变化问题
|x + 1| + |x + 2|的最小值
可以通过相反数运算,将问题转化为基本题型。
|x - (-1)| + |x - (-2)|
更复杂的动点与多固定点距离和问题
问题:|x - 1| + |x - 2| + |x - 3| + … + |x - 2027|的最小值。
利用到的知识要点:
- 绝对值运算最小为零
- 加法运算交换律和结合律不改变运算结果
- 动点在两固定点之间时,与两固定点的距离和最小
- 动点所在区间分类讨论
第一步,将动点与多个固定点之间的距离进行交换和结合:
(|x - 1| + |x - 2027|) + (|x - 2| + |x - 2026|) + ...
,则可以看出复杂题型相当于基本题型的组合。
值得注意的问题,多个绝对值和是否可以两两组合,还取决于是奇数个和偶数个,但并不影响最终的问题解决。
- 偶数个时,取值为最中间两对的区间值
- 奇数个时,为最中间的孤零鬼的值,也正好使得该绝对值为
零
这样组合后,可以看到对于动点的要求,是趋向于中间的时间,每个距离和都可以取得最小值,而使得整体最小。
- 剩下问题:如果每个基本题型距离和最小时,是否整个和最小,则需要分类讨论,可获得显明的证明。读者可以自证,并不很难。
防止进入误区
|x - 1| + 2|x - 2| + 3|x - 3|的最小值
不能简单化为简单题型时,可采用分类讨论,展开绝对值运算,用代数解决方法更简单
其实也可以化为简单题型
|x - 1| + |x - 2| + |x - 2| + |x - 3| + |x - 3| + |x - 3|的最小值
- 排列为逐次增大的绝对值序列,也可以使用数形结合的方式认为动点与固定点之间的距离,相当于泛化了。但结论是正确的
- 笔者根据
作业帮
的提示 - 从两端开始两两组合,也符合取得最小值时越来越趋中的特点
再次变化
|x - 1| + |2x - 4| + |3x - 9| 的最小值