数学建模
文章平均质量分 73
大孔方兄
走别人没走过的路,让别人有路可走
展开
-
数学建模算法 一 简述(3)规划模型-线性规划
线性规划的定义: 求一组变量的值,在满足一组约束条件下,求得目标函数的最优解。根据这个定义,就可以确定线性规划模型的基本结构:(1)变量 变量又叫未知数,它是实际系统的未知因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如Xl,X2,X3,Xmn等。(2)目标函数 将实际系统的目标,用数学形式表现出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值原创 2017-07-18 12:09:46 · 5291 阅读 · 0 评论 -
数学建模算法 一 简述(2)插值 拟合算法
拟合 所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。通俗意义上:拟合是已知点列,从整体上靠近它们插值 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况原创 2017-07-17 11:02:19 · 3576 阅读 · 1 评论 -
数学建模算法 一 简述(1)蒙特卡洛算法
蒙特卡罗方法概述蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。通俗的讲: 蒙特卡罗算法:采样越多,越近似最优解举个例子:假原创 2017-07-13 16:55:25 · 9724 阅读 · 1 评论 -
数学建模算法 一 简述(4)主成分分析(PCA)
PCA定义 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。基本原理简述 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时原创 2017-07-21 11:59:06 · 2923 阅读 · 0 评论