LIBSVM-mat使用方法

Libsvm-mat也是libsvm大家族的成员,只是matlab下的版本而已。


在libsvm的网站上下载libsvm-mat-2.9-1.zip文件,解压后放在任意目录下(比如c:/libsvm-mat-2.9-1下)

打开matlab,切换到c:/libsvm-mat-2.9-1目录下(cd c:/libsvm-mat-2.9-1),键入以下命令:

 

mex -setup

 

Matlab会询问你是否需要locate installed compiler,选择y,然后根据需要选择一个编译器即可。确认时选择y即可。

 (但是这里通常有一个问题,就是MATLAB根本不知道你有没有安装c++编译器,所以可能产生错误,所以如果选择y不行,那就选择n,自己来选择要用的c++编译器,前提条件是你必须安装了对应的c++编译器)

 

这部分编译完成后,然后键入

 

make

 

就会生成svmtrain.dll,svmpredict.dll和read_sparse.dll这三个文件(对于Matlab 7.1及以上版本,生成的对应文件为svmtrain.mexw32,svmpredict.mexw32和read_sparse.mexw32)

 

然后可以在matlab的菜单File->Set Path->Add Folder里,把c:/libsvm-mat-2.9-1目录添加进去,这样以后在任何目录下都可以调用libsvm的函数了。

 

为了检验libsvm和matlab之间的接口是否已经配置完成,可以在matlab下执行以下命令:

 

load heart_scale.mat

 

model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 2');

 

如果运行正常并生成了model这个结构体(其中保存了所有的支持向量及其系数),那么说明libsvm和matlab之间的接口已经完全配置成功。

 

使用时,根据你自己的训练样本的特征数组、类别数组,对例子中的参数做对应替换就行了。
>> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07');
自己使用时,heart_scale_label换成你自己的类别,heart_scale_inst换成自己的特征属性矩阵。

这个运行后就得到了训练后的model模型。

下面就要使用model进行预测了:
>> [predict_label, accuracy, dec_values] = svmpredict(heart_scale_label, heart_scale_inst, model);

预测使用的数据格式和训练样本的相同,heart_scale_label换为你测试样本的类别列向量,heart_scale_inst换成你测试样本 的特征属性矩阵。运行结果,就在predict_label, accuracy, dec_values三个变量中。

类别预测时,预测的类别放在predict_label中;回归预测时,结果放在dec_values中。

libsvm English: libsvm_options: -s svm_type : set type of SVM (default 0) 0 -- C-SVC 1 -- nu-SVC 2 -- one-class SVM 3 -- epsilon-SVR 4 -- nu-SVR -t kernel_type : set type of kernel function (default 2) 0 -- linear: u'*v 1 -- polynomial: (gamma*u'*v + coef0)^degree 2 -- radial basis function: exp(-gamma*|u-v|^2) 3 -- sigmoid: tanh(gamma*u'*v + coef0) 4 -- precomputed kernel (kernel values in training_instance_matrix) -d degree : set degree in kernel function (default 3) -g gamma : set gamma in kernel function (default 1/k) -r coef0 : set coef0 in kernel function (default 0) -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) -m cachesize : set cache memory size in MB (default 100) -e epsilon : set tolerance of termination criterion (default 0.001) -h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1) -b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0) -wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1) -v n: n-fold cross validation mode ========================================================== Chinese: Options:可用的选项即表示的涵义如下   -s svm类型:SVM设置类型(默认0)   0 -- C-SVC   1 --v-SVC   2 – 一类SVM   3 -- e -SVR   4 -- v-SVR   -t 核函数类型:核函数设置类型(默认2)   0 – 线性:u'v   1 – 多项式:(r*u'v + coef0)^degree   2 – RBF函数:exp(-r|u-v|^2)   3 –sigmoid:tanh(r*u'v + coef0)   -d degree:核函数中的degree设置(针对多项式核函数)(默认3)   -g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/ k)   -r coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)   -c cost:设置C-SVC,e -SVR和v-SVR的参数(损失函数)(默认1)   -n nu:设置v-SVC,一类SVM和v- SVR的参数(默认0.5)   -p p:设置e -SVR 中损失函数p的值(默认0.1)   -m cachesize:设置cache内存大小,以MB为单位(默认40)   -e eps:设置允许的终止判据(默认0.001)   -h shrinking:是否使用启发式,0或1(默认1)   -wi weight:设置第几类的参数C为weight*C(C-SVC中的C)(默认1)   -v n: n-fold交互检验模式,n为fold的个数,必须大于等于2   其中-g选项中的k是指输入数据中的属性数。option -v 随机地将数据剖分为n部分并计算交互检验准确度和均方根误差。以上这些参数设置可以按照SVM的类型和核函数所支持的参数进行任意组合,如果设置的参数在函数或SVM类型中没有也不会产生影响,程序不会接受该参数;如果应有的参数设置不正确,参数将采用默认值。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值